
Robust, End-to-end Correctness 
Proofs of Industrial Divide and 
Square Root RTL Designs
Sol Swords, Cuong Chau



Divide and Square Root Hardware Implementations

Hardest part of a typical arithmetic datapath:

● Simple algorithms don’t scale

● Even advanced algorithms are iterative and take longer than most other operations

● Therefore, aggressive optimizations are common

● Verification is correspondingly difficult
○ Can’t be sufficiently tested

○ Can’t practically be checked by fully automatic methods.



Verification options

Full automation
● Algebraic methods
+ Fully automatic
- Only works with 

simple algorithms – 
low-radix, low 
performance

- Broken by ad hoc 
optimizations

Partial automation
● Verify computation 

steps using fully 
automatic tools

● E.g. STE, model 
checkers, equivalence

+ Practical and relatively 
efficient

- Difficult or impossible 
to prove end-to-end 
functional correctness

Low automation
● Mathematical proof 

using interactive 
theorem prover

+ Results in full 
end-to-end proof of 
functional correctness

- High manual effort
- Design changes will 

almost always break 
proofs



Verification options

Full automation
● Algebraic methods
+ Fully automatic
- Only works with 

simple algorithms – 
low-radix, low 
performance

- Broken by ad hoc 
optimizations

Partial automation
● Verify computation 

steps using fully 
automatic tools

● E.g. STE, model 
checkers, equivalence

+ Practical and relatively 
efficient

- Difficult or impossible 
to prove end-to-end 
functional correctness

Low automation
● Mathematical proof 

using interactive 
theorem prover

+ Results in full 
end-to-end proof of 
functional correctness

- High manual effort
- Design changes will 

almost always break 
proofs



Our Approach

● Parse RTL, process into FSM object in the ACL2 theorem prover
● Define top-level specification in ACL2
● Break computation into steps and determine corresponding design cutpoints

○ Want big steps that can be automatically verified
● Define specifications for those steps

○ Want the composition of these to correspond to the top-level specification
● Use automatic methods to prove correctness of each step according to its spec

○ Proof engines verified in ACL2
● Compose theorems about steps into end-to-end proof



Features of this approach

+ Robust to design changes due to block size of automated proofs

+ Works on highly optimized designs with advanced algorithms, high radix

+ Produces end-to-end correctness proof

+ Fast runtime, relatively* short development time



Automation for Hardware Proofs

Two main engines, both written and verified in ACL2:

● FGL: bit blasts ACL2 specs and FSM unrollings into and/inverter graph
○ Queries solved using off-the-shelf SAT solvers, Boolean simplification, equivalence checking 

○ Extensible rewriter for adding new abstractions, normal forms

○ Generates counterexamples

● VeSCMul: Specialized rewriter for adders and multipliers
○ Rewrites spec and implementation to same normal form

○ Hardened on many industrial multiplier designs



Composability of automatic proofs

Composable proof of a computation step: relates values of internal signals on a run of the whole circuit:

“The sum of the values of signals s, c at time n+2 equals the sum of the values of signals p0, …, p7 
at time n+1” 

“If the absolute value of signal rem at time n+3 is less than 3/2 the value of divis at time n, then 
the absolute value of rem at time n+4 is also”

Automatic methods need a strict reduction of the circuit without the fanin cones of the inputs:

“If we override the values of signals p0, …, p7 at time n+1, then the sum of the values of signals s, 
c at time n+2 equals the sum of those values”

“If rem is overridden at time n+3 and divis overridden at time n, and the absolute overridden 
value of rem is less than 3/2 that of divis, then the absolute value of rem at time n+4 is also”



BoothEnc
CSA

Round
Format

Sums Equal

Composition needs this property — about the whole computation:



BoothEnc
CSA

Round
Format

Sums Equal

Automated methods give us this property — about part of the computation:



Composable Theorems from Override Proofs 

Automatic conversion of override theorem to composable theorem uses global properties of the circuit 

artifact:

● Override transparency: overriding a signal to its driven value doesn’t change any signal values

● X-monotonicity: setting an input signal to the X (indeterminate) value is as general as setting it to a 

free variable.

These are proved once for the whole circuit and then used for every cutpoint proof.



Easy* Parts

● Lookup table approximations — error bounds usually provable with SAT

● Rounding/formatting — usually a single automated proof
○ Most bugs found here

● Iterative parts: prove it once, repeat it N times
○ Or equivalence check

● SIMD: prove once (or sometimes twice), equivalence check with other lanes

*moreso than might be expected



Hard parts

● Sometimes the algorithms themselves
○ Good idea to prove the algorithm correct independent of the RTL

○ Reverse engineering can be hard if documentation is lacking

● Bounding arithmetic expressions
○ Quantities have to fit in their bitwidths

○ Error bounds need to converge

○ Def-bounds bound-finding tool



Results

● Initial proofs for divide and square root (while developing methodology) ~3 person-months each
○ Short by industrial standards
○ Subsequent proofs (different sizes/variants, other designs based on same algorithms) were developed faster 

— weeks rather than months

● Composition of steps is now similar to other interactive theorem proving pursuits
● Scalable — verified up to double extended precision FP, 128 / 64 bit integer operations
● Proofs run in minutes — allow fast feedback and bug iterations
● Verifier needs to understand algorithm but not low-level details of design
● Changes in low-level details of design don’t usually break proofs
● Debugging is aided by counterexamples from cutpoint proofs.



Qs?


