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Cheaper multiply, divide, square root
Good for applications with high proportion of 
multiplications 

Advantages of LNS
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 -23.25 = - 9.51...

Different
Interpretations!

Usually, base b = 2

Floating Point versus LNS
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LNS

Floating 
Point 

Lewis’ Observation:
Round to Nearest LNS
ln(2) Better Than FP!
Margin for round error
  yet still be  BTFP

Many possible rounding rules:

a) Round to nearest (difficult with LNS)
b) Up
c) Down
d) Faithful (either up/down implementor’s discretion)
e) Stochastic (like faithful but random)
f) BTFP (like nearest only faithful in hard cases)

g) Weaker than faithful (tableless Mitchell)

Faithful means machine unit ε=2-F

Floating Point versus LNS



European Union: European Logarithmic Microprocessor (ELM)
Motorola:      LNS chip for satellite network
Yamaha:  Music Synthesizer 
Boeing:    Aircraft controls 
Interactive Machines,Inc.:   IMI-500: Animation for Jay Jay the Jet Plane
Advanced Rendering           Hardware Ray-Tracing Engine
Technologies:   
Cambridge/Microsoft:          HTK Hidden Markov Model Toolkit
Univ. of Tokyo:                     N-body Gravity Pipeline (GRAPE): Gordon Bell Prize
NVIDIA:                                 LNS-MADAM and novel LNS summation

Commercial Interest in LNS



Video decoding (Arnold and Walter)
word: 10 bits

Graphics Transformations (Lin, Tong, Zhang et al) 
word: 20 bits

OFDM Receiver (Wang, Lam, Tsui, Cheng, Mow)
word: 6 bits

Tableless
Affordable!

LNS Wordsize for Applications

Feedback Control Systems (Garcia et al.) 
word: 16 bitsNeeds

Table
(Interpolate,
Cotransform)

Back-Propagation Training (Arnold, et al.)
word: 12 bits

LNS-MADAM Training (Zhao, Dally, et al.)
word: 8 bits

Sweet spot for LNS: 
medium wordsize
for Machine 
Learning



G. Buzsáki, K. Mizusek, “The log-dynamic brain: how skewed distributions affect network 
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J. E. Volk, B Parhami, “Number Representation and Arithmetic in the Human Brain”, 
https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf

T. M. Bartol, Jr., et al., “Nanoconnectomic upper bound on the variability of synaptic plasticity”, eLife, 
2015. 10.7554/eLife.10778.002

Weber–Fechner law:  …  response to sensory stimulus (light, sound,...)  proportional to the 
logarithm of the stimulus. 

Mental numbers uses logarithmic scale.

“biological synapses…26 levels in a logarithmic number system, thus storing … 5 bits”

Biological Intelligence uses Logarithms

https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf
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Given p = logb|P| < q = logb|Q|: Why it works:
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Given p = logb|P| < q = logb|Q|: Why it works:
1. Let x = q - p                                  1. x = logb|Q/P|
2. Lookup Φ+(x) = logb(1+bx) 2. Φ+(x) = log b(1+|Q/P|)
              or Φ-(x) = logb|1-bx|     Φ-(x) = log b|1-|Q/P||
3. t = p + Φ(x)                                   3.  t  = logb(|P|(1+|Q|/|P|)                              

Hardware:  
1 min/max unit (so p<q)
1 subtractor
1 function approximation unit
1 adder

p
- t

q

  Φ+(q-p)
  Φ-(q-p)

+

  q-p

LNS Addition via Gaussian Logs



Use: Φ+(x) when signs are same, also known as sb(x) = logb(1+bz) 
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Use: Φ+(x) when signs are same, also known as sb(x) = logb(1+bz) 
Φ-(x) when signs are different, also known as db(x) = logb|1-bz|
Φ(x) for generic Gaussian Log

Φ-(x) harder to approximate
 due to singularity near x=0

y

y = Φ+(x)
y = Φ-(x)

y=x

x
y = Φ-(x) 

Singularity

Commutativity:  only use x < 0
       Φ(x) = Φ(-x) + x
1+X = X+1 = (1+1/X) X

Gaussian Logs
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 leftslope = Φ’(i) 
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err

Left Linear Taylor Interpolation
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r  = x - i
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Φ(i)+r Φ’(i) 



                                                               

          

                                                     
                                                                            
    

   

 i - Δ                                                             i

Δ

rightslope = Φ’(i) 

ThanhSon23.Coleman00

Right Linear Taylor Interpolation

err

r always 
negative

Φ(i)

 Φ(i - Δ) 

r 

actual
Φ(x)

approx
Φ(i) - r Φ’(i) 



                                                               

          

                                                     
                                                                            
    

   

 i - Δ                                                             i

Δ

rightslope = Φ’(i) 

ThanhSon23.Coleman00

err

r always 
negative

Φ(i)

 Φ(i - Δ) 

r 

actual
Φ(x)

approx
Φ(i) - r Φ’(i) 

Right Linear Taylor Interpolation



 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision)    15 17   19   21   23
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 Φ- bits    1K 4K 10K 24K  60K
Problem: Φ- takes most of the ROM
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       Problem:  Number of stages proportional to precision
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 1. Partition range of x with non-uniform Δ [Lewis 1989]
F (precision)    15 17   19   21   23
 Φ+ bits 0.3K 1K   2K   5K 10K
 Φ- bits    1K 4K 10K 24K  60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem:  Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
  with x = rb + ra to Φ+ [Ar nold 1998] :

   Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)),  where ra >0 and rb >0

b) Convert Φ- with x = rb - ra near 0 to Φ- with arg away 0 [Coleman 2000]:
   Φ-(rb + ra) = Φ-(rb) + Φ-

 (rb + Φ-(ra) – Φ-(rb)),  where ra<0 and rb>0 
       = Φ-(rb) + Φ-

 (rb - ra + Φ-(ra) – Φ-(rb)) 
       = Φ-(rb) + Φ-

 ( x   + Φ-(ra) – Φ-(rb))
Problem: still needs moderate-sized table of Φ-(ra) and Φ-(rb)

 4. Use higher-order co-transformation involving ra , rb, rc ...: 
a) Recursive application of 3a) [Arnold 1997] or 
b) Recursive application of 3b) [Coleman 2011]
Problem: challenging to formalize

Commutativity:
 Φ(- ra) = - ra+Φ(ra) 

Prior solutions for Φ- singularity



Formally verified error bounds for Φ+ and Φ- approximations



Lean4: A programming language and a proof assistant

● Built on dependent type theory 
○ Enables precise mathematical definitions and rigorous proof construction. 

● Mathlib: A comprehensive mathematics library
○ Includes definitions and theorems crucial for formalizing diverse areas like 

calculus, algebra, and analysis.
● Metaprogramming capabilities

○ Enables custom tactics and automation to streamline the proof process.



Mathlib support for formalizing calculus-based proofs

● Limits of Functions
○ Filter.Tendsto.add, Filter.Tendsto.rpow 
○ HasDerivAt.lhopital_zero_right_on_Ioo

● Derivatives
○ deriv_add, deriv_sub, deriv_mul, deriv_div

● Continuity and Differentiability
○ Continuous.add, ContinuousOn.add, ContinuousAt.add
○ Differentiable.add, DifferentiableOn.add, 

DifferentiableAt.add
● Monotonicity and Antitonicity

○ monotone_of_deriv_nonneg, antitone_of_deriv_nonpos
○ strictMono_of_deriv_pos, strictAnti_of_deriv_neg

● Tactics
○ fun_prop, continuity
○ norm_num, positivity, linarith
○ field_simp, ring_nf



First-order Taylor approximation

Look-up Tables

Pre-computed and storedWant to compute



Error sources

REAL

FIXED-POINT

Approximation 
Error

Fixed-point 
rounding Error



Error of first-order Taylor approximation of Φ+

Y-Axis : Error of first-order Taylor approximation at x 

Error  increases
wiith r
and vanishes at table 
entries
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Main proof ideas

● Consider the error function 

as a function of two independent real-valued variable i ≤ 0 and r ≥ 0.
● Show that E(i, r) is a strictly increasing function of r for fixed i ≤ 0.
● Show that E(i, r) is a strictly increasing function of i for fixed 0 ≤ r.
● The maximum error is reached when i = 0 and r = Δ.

Maximum error



Error bound for first-order Taylor approximation of Φ+



Error of first-order Taylor approximation of Φ-

Y-Axis : Error of first-order Taylor approximation at x 



Error of first-order Taylor approximation of Φ-



Total error bound of first-order Taylor approximation

Fixed-point rounding 
Error

Approximation Error



Total error bound of first-order Taylor approximation



Subtraction requires special treatment for -1 < x < 0



0

Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0 
such that rb < x and -Δa ≤ ra < 0.



Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0 
such that rb < x and -Δa ≤ ra < 0. 
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Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0 
such that rb < x and -Δa ≤ ra < 0. 

● Compute Φ- as Φ-(x) = Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - Φ-(rb)).
● Requires 2 tables: Ta which contains all values of fixed-point values x in [-

Δa, 0) and Tb which contains all integer multiples rb = i Δa in (-1, Δa).

0

Look-up Tb
Look-up Ta



For x in (-1, 0) consider 2 cases:
1) x in [-Δa, 0). Take the value of Φ-(x) directly from table Ta.
2) x in (-1, -Δa). Compute rb and ra, Φ-(rb) is taken from table Tb, Φ-(ra) is 

taken from table Ta, and x + Φ-(ra) - Φ-(rb) < -1 is computed with other 
approximation techniques (e.g., Taylor approximation).

Coleman’s co-transformation

0

Look-up Tb
Look-up Ta

Interpolation Close to 0Less than -1



● Problem: Too many values in tables Ta and Tb when ε is small.

Example: ε = 2-32, Δa = 2-16.
Tables Ta and Tb have approximately 216 values each.

Coleman’s co-transformation



● Problem: Too many values in tables Ta and Tb when ε is small.

Example: ε = 2-32, Δa = 2-16.
Tables Ta and Tb have approximately 216 values each.

● Solution: Define Δb > Δa and apply co-transformation technique twice.

Compute rc such that x = rc - rab with rc = j Δb with j < 0 and rc < x, 
-Δb ≤ rab < 0. Apply co-transformation to rab and get rab = rb - ra, rb < rab, 
-Δa ≤ ra < 0.

Requires one more table Tc  .
Tables Ta, Tb and Tc have approximately 211 values each.

Coleman’s co-transformation



To compute Φ-(x) consider 3 cases:

1) -Δa ≤ x < 0: Φ-(x) is taken from Ta.
2) x in [-Δb, -Δa): Φ-(x) is computed as Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - Φ-(rb)).
3) x in (-1, -Δb): Φ-(x) is computed as

Φ-(x) = Φ-(rc - rab) = Φ-(rc) + Φ-(x + Φ-(rab) - Φ-(rc))
Here Φ-(rc) is taken from table Tc   and Φ-(rab) = Φ-(rb - ra) is computed as in 
case 2.

Coleman’s co-transformation



Coleman’s co-transformation

To compute Φ-(x) consider 3 4 cases:

1) -Δa ≤ x < 0: Φ-(x) is taken from Ta.
2) x in [-Δb, -Δa): Φ-(x) is computed as Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - 

Φ-(rb)).
3) x in (-1, -Δb): Φ-(x) is computed as

Φ-(x) = Φ-(rc - rab) = Φ-(rc) + Φ-(x + Φ-(rab) - Φ-(rc))
Here Φ-(rc) is taken from table Tc   and Φ-(rab) = Φ-(rb - ra) is computed as in 
case 2.

4) x in (-1, -Δb) and rab < -Δa. In this case, we cannot compute Φ-(rab) as in 
case 2 because rab + Φ-(ra) - Φ-(rb) could be > -1. Take the value of Φ-(rab) 
directly from Ta.

Formalization revealed this additional case which was missing in our original 
informal proof.



Co-transformation formula with rounding:

Co-transformation error bound

An approximation of 
Φ-(x) for x ≤ -1

A rounded value of Φ-(x) 

stored in table Tb 

A rounded value of Φ-(x) 
stored in table Ta



Co-transformation error bound



Co-transformation error bound (simplified)



Exhaustive verification

dashed lines = theoretical bound 
solid lines = exhaustive test

For given ∆,
Φ+   two bits 
more accurate 
than Φ-: take
more memory
for same
accuracy



Exhaustive verification

ε = 223 which 
explains the
“hockey stick”
shape

dashed lines = theoretical bound 
solid lines = exhaustive test

For given ∆,
Φ+   two bits 
more accurate 
than Φ-: take
more memory
for same
accuracy



Exhaustive verification

For ∆ > ε, 
log

2
(err) = 2 log

2
(∆) = log

2
(∆2) + constant: known quadratic err of linear interpolation

dashed lines = theoretical bound 
solid lines = exhaustive test

ε = 223 which 
explains the
“hockey stick”
shape

For given ∆,
Φ+   two bits 
more accurate 
than Φ-: take
more memory
for same
accuracy



Results

● Formally verified error bounds for first order Taylor approximations of Φ+

and Φ-.

● Formally verified error bounds for co-transformation techniques for 
computing Φ- near zero.

● A library of Lean 4 definitions and lemmas for error analysis of LNS:

https://github.com/soarlab/RigorousErrorLNS



Future work

● Developing additional Lean 4 tactics and error-analysis lemmas.

● Tighter bounds for co-transformation.

● Error analysis for LNS variations:
○ Error Correction (EC)/quadratic 
○ Other co-transformation [Arnold 1997] 

■ unlike [Coleman 2000] does not use less accurate Φ− interpolation
○ Bases other than two 
○ Guard bits
○ Varying ∆s 
○ Table-less LNS design





Exhaustive verification with directed rounding



Metaprogramming - developing tactics


