
Rigorous Error Analysis for
Logarithmic Number Systems

Mark G. Arnold
Lehigh University
maab@lehigh.edu

www.xlnsresearch.com
github.com/xlnsresearch

Ganesh
Gopalakrishnan
University of Utah

ganesh@cs.utah.edu

Alexey Solovyev

University of Utah
solovyev.alexey@gmail.com

Thanh Son Nguyen

University of Utah

thahnson@cs.utah.edu

https://github.com/soarlab/RigorousErrorLNS

Presented at the 32nd IEEE International Symposium on Computer Arithmetic
ARITH 2025

www.xlnsresearch.com
github.com/xlnsresearch

A word about “ xlns” as relevant to this paper

www.xlnsresearch.com
github.com/xlnsresearch

A word about “ xlns” as relevant to this paper

www.xlnsresearch.com website (also xlnsresearch.github.io) = Logarithmic Number Systems (LNS) papers

www.xlnsresearch.com
github.com/xlnsresearch

A word about “ xlns” as relevant to this paper

www.xlnsresearch.com website (also xlnsresearch.github.io) = Logarithmic Number Systems (LNS) papers

github.com/xlnsresearch open-source repositories for LNS

xlns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as xl

www.xlnsresearch.com
github.com/xlnsresearch

A word about “ xlns” as relevant to this paper

www.xlnsresearch.com website (also xlnsresearch.github.io) = Logarithmic Number Systems (LNS) papers

github.com/xlnsresearch open-source repositories for LNS

xlns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as xl
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah_tayco_ufunc

www.xlnsresearch.com
github.com/xlnsresearch

www.xlnsresearch.com website (also xlnsresearch.github.io) = Logarithmic Number Systems (LNS) papers

github.com/xlnsresearch open-source repositories for LNS

xlns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as xl
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah_tayco_ufunc

 >>> import xlns as xl
 >>> xl.xlnsnp([1,2,3])+4
 xlnsnp([xlns(5.00000016087236) xlns(5.999999933686084) xlns(7.000000011403832)])

A word about “ xlns” as relevant to this paper

www.xlnsresearch.com
github.com/xlnsresearch

www.xlnsresearch.com website (also xlnsresearch.github.io) = Logarithmic Number Systems (LNS) papers

github.com/xlnsresearch open-source repositories for LNS

xlns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as xl
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah_tayco_ufunc

 >>> import xlns as xl
 >>> xl.xlnsnp([1,2,3])+4
 xlnsnp([xlns(5.00000016087236) xlns(5.999999933686084) xlns(7.000000011403832)])
 >>> import xlnsconf.utah_tayco_ufunc
 >>> xl.xlnsnp([1,2,3])+4
 xlnsnp([xlns(4.999999747724449) xlns(5.999999933686084) xlns(6.999999432996774)]
 >>> xl.xlnssetF(9)
 >>> xl.xlnsnp([1,2,3])+4
 xlnsnp([xlns(4.994403908756931) xlns(5.995933468164773) xlns(7.006013412127704)])

A word about “ xlns” as relevant to this paper

Cheaper multiply, divide, square root
Good for applications with high proportion of
multiplications

Advantages of LNS

 1 2 3 4 5 6 7891 2 3 4 5 6 7891

1 2 3 4 5 6 7891 2 3 4 5 67891

log(2)

log(2) + log(3) =
log(6)

log(3)

0 0 1 1 0 1

K Integer F Fractional
Sign

Floating-point:

+23 . 1.25 = +10
LNS:

+23.25 = +9.51...

Different
Interpretations!

Floating Point versus LNS

Usually, base b = 2

1 0 1 1 0 1

K Integer F Fractional
Sign

Floating-point:

 -23 . 1.25 = -10
LNS:

 -23.25 = - 9.51...

Different
Interpretations!

Usually, base b = 2

Floating Point versus LNS

1.0

4.0

2.0

Discrete change in distance
causes wobble in relative precision

LNS

Floating
Point

Floating Point versus LNS

Discrete change in distance
causes wobble in relative precision

1.0

4.0

2.0

Continuous change in distance
means constant relative precision

LNS

Floating
Point

Floating Point versus LNS

1.0

4.0

2.0

LNS

Floating
Point

Lewis’ Observation:
Round to Nearest LNS
ln(2) Better Than FP!
Margin for round error
 yet still be BTFP

Floating Point versus LNS

1.0

4.0

2.0

LNS

Floating
Point

Lewis’ Observation:
Round to Nearest LNS
ln(2) Better Than FP!
Margin for round error
 yet still be BTFP

Many possible rounding rules:

a) Round to nearest (difficult with LNS)
b) Up
c) Down
d) Faithful (either up/down implementor’s discretion)
e) Stochastic (like faithful but random)
f) BTFP (like nearest only faithful in hard cases)

g) Weaker than faithful (tableless Mitchell)

Faithful means machine unit ε=2-F

Floating Point versus LNS

European Union: European Logarithmic Microprocessor (ELM)
Motorola: LNS chip for satellite network
Yamaha: Music Synthesizer
Boeing: Aircraft controls
Interactive Machines,Inc.: IMI-500: Animation for Jay Jay the Jet Plane
Advanced Rendering Hardware Ray-Tracing Engine
Technologies:
Cambridge/Microsoft: HTK Hidden Markov Model Toolkit
Univ. of Tokyo: N-body Gravity Pipeline (GRAPE): Gordon Bell Prize
NVIDIA: LNS-MADAM and novel LNS summation

Commercial Interest in LNS

Video decoding (Arnold and Walter)
word: 10 bits

Graphics Transformations (Lin, Tong, Zhang et al)
word: 20 bits

OFDM Receiver (Wang, Lam, Tsui, Cheng, Mow)
word: 6 bits

Tableless
Affordable!

LNS Wordsize for Applications

Feedback Control Systems (Garcia et al.)
word: 16 bitsNeeds

Table
(Interpolate,
Cotransform)

Back-Propagation Training (Arnold, et al.)
word: 12 bits

LNS-MADAM Training (Zhao, Dally, et al.)
word: 8 bits

Sweet spot for LNS:
medium wordsize
for Machine
Learning

G. Buzsáki, K. Mizusek, “The log-dynamic brain: how skewed distributions affect network
operations”, Nat Rev Neurosci. 15(4):264-78, Apr. 2014.doi: 10.1038/nrn3687.

J. E. Volk, B Parhami, “Number Representation and Arithmetic in the Human Brain”,
https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf

T. M. Bartol, Jr., et al., “Nanoconnectomic upper bound on the variability of synaptic plasticity”, eLife,
2015. 10.7554/eLife.10778.002

Weber–Fechner law: … response to sensory stimulus (light, sound,...) proportional to the
logarithm of the stimulus.

Mental numbers uses logarithmic scale.

“biological synapses…26 levels in a logarithmic number system, thus storing … 5 bits”

Biological Intelligence uses Logarithms

https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf

Jiawei Zhao, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, Mustafa
Ali, Ming-Yu Liu, Brucek Khailany, William J. Dally, Anima Anandkumar,
“LNS-Madam: Low-Precision Training in Logarithmic Number System using
Multiplicative Weight Update” arXiv preprint 2106.13914v3

Appeared in IEEE Trans. Comput. vol. 71, no. 12, pp. 3179-3190, 1 Dec.
2022, doi: 10.1109/TC.2022.3202747.

Authors are from NVIDIA, which has several related patent applications

Jiawei Zhao, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, Mustafa
Ali, Ming-Yu Liu, Brucek Khailany, William J. Dally, Anima Anandkumar,
“LNS-Madam: Low-Precision Training in Logarithmic Number System using
Multiplicative Weight Update” arXiv preprint 2106.13914v3

Appeared in IEEE Trans. Comput. vol. 71, no. 12, pp. 3179-3190, 1 Dec.
2022, doi: 10.1109/TC.2022.3202747.

Most of the authors are from NVIDIA, which halated paten applications

Jiawei Zhao, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, Mustafa
Ali, Ming-Yu Liu, Brucek Khailany, William J. Dally, Anima Anandkumar,
“LNS-Madam: Low-Precision Training in Logarithmic Number System using
Multiplicative Weight Update” arXiv preprint 2106.13914v3

Appeared in IEEE Trans. Comput. vol. 71, no. 12, pp. 3179-3190, 1 Dec.
2022, doi: 10.1109/TC.2022.3202747.

Most of the authors are from NVIDIA, which has several related patent ap

Given p = logb|P| < q = logb|Q|: Why it works:
1. Let x = q - p 1. x = logb|Q/P|

Hardware:
1 min/max unit (so p<q)
1 subtractor

p
-

q

LNS Addition via Gaussian Logs

 q-p

Given p = logb|P| < q = logb|Q|: Why it works:
1. Let x = q - p 1. x = logb|Q/P|
2. Lookup Φ+(x) = logb(1+bx) 2. Φ+(x) = log b(1+|Q/P|)
 or Φ-(x) = logb|1-bx| Φ-(x) = log b|1-|Q/P||

Hardware:
1 min/max unit (so p<q)
1 subtractor
1 function approximation unit

p
-

q

 Φ+(q-p)
 Φ-(q-p)

 q-p

LNS Addition via Gaussian Logs

Given p = logb|P| < q = logb|Q|: Why it works:
1. Let x = q - p 1. x = logb|Q/P|
2. Lookup Φ+(x) = logb(1+bx) 2. Φ+(x) = log b(1+|Q/P|)
 or Φ-(x) = logb|1-bx| Φ-(x) = log b|1-|Q/P||
3. t = p + Φ(x) 3. t = logb(|P|(1+|Q|/|P|)

Hardware:
1 min/max unit (so p<q)
1 subtractor
1 function approximation unit
1 adder

p
- t

q

 Φ+(q-p)
 Φ-(q-p)

+

 q-p

LNS Addition via Gaussian Logs

Use: Φ+(x) when signs are same, also known as sb(x) = logb(1+bz)
Φ-(x) when signs are different, also known as db(x) = logb|1-bz|
Φ(x) for generic Gaussian Log

y

y = Φ+(x)
y = Φ-(x)

y=x

x
y = Φ-(x)

Gaussian Logs

Use: Φ+(x) when signs are same, also known as sb(x) = logb(1+bz)
Φ-(x) when signs are different, also known as db(x) = logb|1-bz|
Φ(x) for generic Gaussian Log

Φ-(x) harder to approximate
 due to singularity near x=0

y

y = Φ+(x)
y = Φ-(x)

y=x

x
y = Φ-(x)

Singularity

Gaussian Logs

Use: Φ+(x) when signs are same, also known as sb(x) = logb(1+bz)
Φ-(x) when signs are different, also known as db(x) = logb|1-bz|
Φ(x) for generic Gaussian Log

Φ-(x) harder to approximate
 due to singularity near x=0

y

y = Φ+(x)
y = Φ-(x)

y=x

x
y = Φ-(x)

Singularity

Commutativity: only use x < 0
 Φ(x) = Φ(-x) + x
1+X = X+1 = (1+1/X) X

Gaussian Logs

 i i + Δ

Φ(i+Δ)

 Φ(i)

Δ

 leftslope = Φ’(i)

Arnold82,Vancouver04

err

Left Linear Taylor Interpolation

 r always
positive

r = x - i

actual
Φ(x)

approx
Φ(i)+r Φ’(i)

 i - Δ i

Δ

rightslope = Φ’(i)

ThanhSon23.Coleman00

Right Linear Taylor Interpolation

err

r always
negative

Φ(i)

 Φ(i - Δ)

r

actual
Φ(x)

approx
Φ(i) - r Φ’(i)

 i - Δ i

Δ

rightslope = Φ’(i)

ThanhSon23.Coleman00

err

r always
negative

Φ(i)

 Φ(i - Δ)

r

actual
Φ(x)

approx
Φ(i) - r Φ’(i)

Right Linear Taylor Interpolation

 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision

Prior solutions for Φ- singularity

 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
 with x = rb + ra to Φ+ [Ar nold 1998] :

 Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)), where ra >0 and rb >0

Prior solutions for Φ- singularity

 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
 with x = rb + ra to Φ+ [Ar nold 1998] :

 Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)), where ra >0 and rb >0

b) Convert Φ- with x = rb - ra near 0 to Φ- with arg away 0 [Coleman 2000]:
 Φ-(rb + ra) = Φ-(rb) + Φ-

 (rb + Φ-(ra) – Φ-(rb)), where ra<0 and rb>0

Prior solutions for Φ- singularity

 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
 with x = rb + ra to Φ+ [Ar nold 1998] :

 Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)), where ra >0 and rb >0

b) Convert Φ- with x = rb - ra near 0 to Φ- with arg away 0 [Coleman 2000]:
 Φ-(rb + ra) = Φ-(rb) + Φ-

 (rb + Φ-(ra) – Φ-(rb)), where ra<0 and rb>0

Prior solutions for Φ- singularity

 1. Partition range of x with non-uniform Δ [Lewis 1990]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
 with x = rb + ra to Φ+ [Ar nold 1998] :

 Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)), where ra >0 and rb >0

b) Convert Φ- with x = rb - ra near 0 to Φ- with arg away 0 [Coleman 2000]:
 Φ-(rb + ra) = Φ-(rb) + Φ-

 (rb + Φ-(ra) – Φ-(rb)), where ra<0 and rb>0
 = Φ-(rb) + Φ-

 (rb - ra + Φ-(ra) – Φ-(rb))
 = Φ-(rb) + Φ-

 (x + Φ-(ra) – Φ-(rb))
Problem: still needs moderate-sized table of Φ-(ra) and Φ-(rb)

Commutativity:
 Φ(- ra) = - ra+Φ(ra)

Prior solutions for Φ- singularity

 1. Partition range of x with non-uniform Δ [Lewis 1989]
F (precision) 15 17 19 21 23
 Φ+ bits 0.3K 1K 2K 5K 10K
 Φ- bits 1K 4K 10K 24K 60K
Problem: Φ- takes most of the ROM

2. Separate non-interpolative computation of 1+bx and logb [Chen 2003]
 Problem: Number of stages proportional to precision
 3. Use co-transformation to

a) Convert Φ-
 with x = rb + ra to Φ+ [Ar nold 1998] :

 Φ-(rb + ra) = Φ-(rb) + Φ+
 (rb + Φ-(ra) – Φ-(rb)), where ra >0 and rb >0

b) Convert Φ- with x = rb - ra near 0 to Φ- with arg away 0 [Coleman 2000]:
 Φ-(rb + ra) = Φ-(rb) + Φ-

 (rb + Φ-(ra) – Φ-(rb)), where ra<0 and rb>0
 = Φ-(rb) + Φ-

 (rb - ra + Φ-(ra) – Φ-(rb))
 = Φ-(rb) + Φ-

 (x + Φ-(ra) – Φ-(rb))
Problem: still needs moderate-sized table of Φ-(ra) and Φ-(rb)

 4. Use higher-order co-transformation involving ra , rb, rc ...:
a) Recursive application of 3a) [Arnold 1997] or
b) Recursive application of 3b) [Coleman 2011]
Problem: challenging to formalize

Commutativity:
 Φ(- ra) = - ra+Φ(ra)

Prior solutions for Φ- singularity

Formally verified error bounds for Φ+ and Φ- approximations

Lean4: A programming language and a proof assistant

● Built on dependent type theory
○ Enables precise mathematical definitions and rigorous proof construction.

● Mathlib: A comprehensive mathematics library
○ Includes definitions and theorems crucial for formalizing diverse areas like

calculus, algebra, and analysis.
● Metaprogramming capabilities

○ Enables custom tactics and automation to streamline the proof process.

Mathlib support for formalizing calculus-based proofs

● Limits of Functions
○ Filter.Tendsto.add, Filter.Tendsto.rpow
○ HasDerivAt.lhopital_zero_right_on_Ioo

● Derivatives
○ deriv_add, deriv_sub, deriv_mul, deriv_div

● Continuity and Differentiability
○ Continuous.add, ContinuousOn.add, ContinuousAt.add
○ Differentiable.add, DifferentiableOn.add,

DifferentiableAt.add
● Monotonicity and Antitonicity

○ monotone_of_deriv_nonneg, antitone_of_deriv_nonpos
○ strictMono_of_deriv_pos, strictAnti_of_deriv_neg

● Tactics
○ fun_prop, continuity
○ norm_num, positivity, linarith
○ field_simp, ring_nf

First-order Taylor approximation

Look-up Tables

Pre-computed and storedWant to compute

Error sources

REAL

FIXED-POINT

Approximation
Error

Fixed-point
rounding Error

Error of first-order Taylor approximation of Φ+

Y-Axis : Error of first-order Taylor approximation at x

Error increases
wiith r
and vanishes at table
entries

Main proof ideas

● Consider the error function

as a function of two independent real-valued variable i ≤ 0 and r ≥ 0.

Main proof ideas

● Consider the error function

as a function of two independent real-valued variable i ≤ 0 and r ≥ 0.
● Show that E(i, r) is a strictly increasing function of r for fixed i ≤ 0.

Main proof ideas

● Consider the error function

as a function of two independent real-valued variable i ≤ 0 and r ≥ 0.
● Show that E(i, r) is a strictly increasing function of r for fixed i ≤ 0.
● Show that E(i, r) is a strictly increasing function of i for fixed 0 ≤ r.

Main proof ideas

● Consider the error function

as a function of two independent real-valued variable i ≤ 0 and r ≥ 0.
● Show that E(i, r) is a strictly increasing function of r for fixed i ≤ 0.
● Show that E(i, r) is a strictly increasing function of i for fixed 0 ≤ r.
● The maximum error is reached when i = 0 and r = Δ.

Maximum error

Error bound for first-order Taylor approximation of Φ+

Error of first-order Taylor approximation of Φ-

Y-Axis : Error of first-order Taylor approximation at x

Error of first-order Taylor approximation of Φ-

Total error bound of first-order Taylor approximation

Fixed-point rounding
Error

Approximation Error

Total error bound of first-order Taylor approximation

Subtraction requires special treatment for -1 < x < 0

0

Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0
such that rb < x and -Δa ≤ ra < 0.

Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0
such that rb < x and -Δa ≤ ra < 0.

● Compute Φ- as Φ-(x) = Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - Φ-(rb)).

0

Coleman’s co-transformation

● Assume that x in (-1, 0). Fix a small value Δa > 0.
Write x = rb - ra with rb = i Δa for some integer i < 0
such that rb < x and -Δa ≤ ra < 0.

● Compute Φ- as Φ-(x) = Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - Φ-(rb)).
● Requires 2 tables: Ta which contains all values of fixed-point values x in [-

Δa, 0) and Tb which contains all integer multiples rb = i Δa in (-1, Δa).

0

Look-up Tb
Look-up Ta

For x in (-1, 0) consider 2 cases:
1) x in [-Δa, 0). Take the value of Φ-(x) directly from table Ta.
2) x in (-1, -Δa). Compute rb and ra, Φ-(rb) is taken from table Tb, Φ-(ra) is

taken from table Ta, and x + Φ-(ra) - Φ-(rb) < -1 is computed with other
approximation techniques (e.g., Taylor approximation).

Coleman’s co-transformation

0

Look-up Tb
Look-up Ta

Interpolation Close to 0Less than -1

● Problem: Too many values in tables Ta and Tb when ε is small.

Example: ε = 2-32, Δa = 2-16.
Tables Ta and Tb have approximately 216 values each.

Coleman’s co-transformation

● Problem: Too many values in tables Ta and Tb when ε is small.

Example: ε = 2-32, Δa = 2-16.
Tables Ta and Tb have approximately 216 values each.

● Solution: Define Δb > Δa and apply co-transformation technique twice.

Compute rc such that x = rc - rab with rc = j Δb with j < 0 and rc < x,
-Δb ≤ rab < 0. Apply co-transformation to rab and get rab = rb - ra, rb < rab,
-Δa ≤ ra < 0.

Requires one more table Tc .
Tables Ta, Tb and Tc have approximately 211 values each.

Coleman’s co-transformation

To compute Φ-(x) consider 3 cases:

1) -Δa ≤ x < 0: Φ-(x) is taken from Ta.
2) x in [-Δb, -Δa): Φ-(x) is computed as Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) - Φ-(rb)).
3) x in (-1, -Δb): Φ-(x) is computed as

Φ-(x) = Φ-(rc - rab) = Φ-(rc) + Φ-(x + Φ-(rab) - Φ-(rc))
Here Φ-(rc) is taken from table Tc and Φ-(rab) = Φ-(rb - ra) is computed as in
case 2.

Coleman’s co-transformation

Coleman’s co-transformation

To compute Φ-(x) consider 3 4 cases:

1) -Δa ≤ x < 0: Φ-(x) is taken from Ta.
2) x in [-Δb, -Δa): Φ-(x) is computed as Φ-(rb - ra) = Φ-(rb) + Φ-(x + Φ-(ra) -

Φ-(rb)).
3) x in (-1, -Δb): Φ-(x) is computed as

Φ-(x) = Φ-(rc - rab) = Φ-(rc) + Φ-(x + Φ-(rab) - Φ-(rc))
Here Φ-(rc) is taken from table Tc and Φ-(rab) = Φ-(rb - ra) is computed as in
case 2.

4) x in (-1, -Δb) and rab < -Δa. In this case, we cannot compute Φ-(rab) as in
case 2 because rab + Φ-(ra) - Φ-(rb) could be > -1. Take the value of Φ-(rab)
directly from Ta.

Formalization revealed this additional case which was missing in our original
informal proof.

Co-transformation formula with rounding:

Co-transformation error bound

An approximation of
Φ-(x) for x ≤ -1

A rounded value of Φ-(x)

stored in table Tb

A rounded value of Φ-(x)
stored in table Ta

Co-transformation error bound

Co-transformation error bound (simplified)

Exhaustive verification

dashed lines = theoretical bound
solid lines = exhaustive test

For given ∆,
Φ+ two bits
more accurate
than Φ-: take
more memory
for same
accuracy

Exhaustive verification

ε = 223 which
explains the
“hockey stick”
shape

dashed lines = theoretical bound
solid lines = exhaustive test

For given ∆,
Φ+ two bits
more accurate
than Φ-: take
more memory
for same
accuracy

Exhaustive verification

For ∆ > ε,
log

2
(err) = 2 log

2
(∆) = log

2
(∆2) + constant: known quadratic err of linear interpolation

dashed lines = theoretical bound
solid lines = exhaustive test

ε = 223 which
explains the
“hockey stick”
shape

For given ∆,
Φ+ two bits
more accurate
than Φ-: take
more memory
for same
accuracy

Results

● Formally verified error bounds for first order Taylor approximations of Φ+

and Φ-.

● Formally verified error bounds for co-transformation techniques for
computing Φ- near zero.

● A library of Lean 4 definitions and lemmas for error analysis of LNS:

https://github.com/soarlab/RigorousErrorLNS

Future work

● Developing additional Lean 4 tactics and error-analysis lemmas.

● Tighter bounds for co-transformation.

● Error analysis for LNS variations:
○ Error Correction (EC)/quadratic
○ Other co-transformation [Arnold 1997]

■ unlike [Coleman 2000] does not use less accurate Φ− interpolation
○ Bases other than two
○ Guard bits
○ Varying ∆s
○ Table-less LNS design

Exhaustive verification with directed rounding

Metaprogramming - developing tactics

