Rigorous Error Analysis for
Logarithmic Number Systems

Presented at the 32" IEEE International Symposium on Computer Arithmetic
ARITH 2025

Ganesh
Thanh Son Nguyen Alexey Solovyev Gopalakrishnan ~ M@rk G- Arnold
University of Utah University of Utah University of Utah Lehigh University

solovyev.alexey@gmail.com maab@lehigh.edu

thahnson@cs.utah.edu ganesh@cs.utah.edu

J

~

LEHIGH

UNIVERSITY

KAHLERT SCHOOL OF COMPUTING NS lie‘st’!ﬁllll'ﬂ l
THE UNIVERSITY OF UTAH

www.xlnsresearch.com

https://github.com/soarlab/RigorousErrorLNS github.com/xinsresearch

A word about “ xins” as relevant to this paper

% | IIIIH]
NS deiaah

www.xInsresearch.com
github.com/xInsresearch

A word about “ xins” as relevant to this paper

www.xInsresearch.com website (also xInsresearch.github.io) = Logarithmic Number Systems (LNS) papers

S Research

www.xInsresearch.com
github.com/xInsresearch

A word about “ xins” as relevant to this paper

www.xInsresearch.com website (also xInsresearch.github.io) = Logarithmic Number Systems (LNS) papers
github.com/xinsresearch open-source repositories for LNS

xIns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as x1

% e 2elie] IIIIII]
NS Researeh

www.xInsresearch.com
github.com/xInsresearch

A word about “ xins” as relevant to this paper

www.xInsresearch.com website (also xInsresearch.github.io) = Logarithmic Number Systems (LNS) papers
github.com/xinsresearch open-source repositories for LNS

xIns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as x1
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah tayco ufunc

% | IIIIH]
NS deiaah

www.xInsresearch.com
github.com/xInsresearch

A word about “ xins” as relevant to this paper

www.xInsresearch.com website (also xInsresearch.github.io) = Logarithmic Number Systems (LNS) papers
github.com/xinsresearch open-source repositories for LNS

xIns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as x1
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah tayco ufunc
import xlns as x1

x1l.xlnsnp([1,2,3])+4
x1lnsnp ([x1ns (5.00000016087236) x1ns(5.999999933686084) xlns(7.000000011403832)1])

% 1 IIIIIII]
NS debearth

www.xInsresearch.com
github.com/xInsresearch

A word about “ xins” as relevant to this paper

www.xInsresearch.com website (also xInsresearch.github.io) = Logarithmic Number Systems (LNS) papers
github.com/xinsresearch open-source repositories for LNS

xIns configurable Python library for LNS tensors (analogous to Numpy)
available as PyPi wheel via pip install xlns
play with it in Python import xlns as x1
supports plug-in configurations for novel LNS arithmetic algorithms
actively seeks open-source contribution of these
algorithms used in this paper are available import xlnsconf.utah tayco ufunc

import xlns as x1
x1l.xlnsnp([1,2,3]):4

x1lnsnp ([x1ns (5.00000016187236) x1ns(5.999999933686084) xlns(7.000000011403832)1])
import xlnsconf.ut=li tayco ufunc
x1l.xlnsnp([1,2,37)+"

xlnsnp ([x1ns (4.999¢99747724449) x1ns (5.999999933686084) x1ns (6.999999432996774)]
x1.xlnsset 7 (9)
x1l.xlnsnp (12 ., 3])+4

x1lnsnp ([x1ns (4.994403908756931) x1ns (5.995933468164773) x1lns(7.006013412127704)])%

e 2elie] IlIIlI]
NS Researa

www.xInsresearch.com
github.com/xInsresearch

Advantages of LNS

Cheaper multiply, divide, square root
Good for applications with high proportion of

multiplications log(3)

¢z

o

o |—

==
=

h

w—
o=
-

Floating Point versus LNS

Kinteger F Fractional
Sign A

O/(0|1|1 0|1

Ae rerx

]] Interpretations!
Floating-point: LNS:

+23:1.25 =+10 +23:2> = +'9.51...

Usually, base b = 2

Floating Point versus LNS

Kinteger F Fractional
Sign A

110, 1]1/|0]|1

Ae rerx

]] Interpretations!
Floating-point: LNS:

-23:1.25= -10 -23:2° = —'9.51...

Usually, base b = 2

Floating Point versus LNS

LNS

:h

o
1
1

N
o
I I

-
o

Discrete change in distance
causes wobble in relative precision

Floating
Point

Floating Point versus LNS

LNS
4.0- - O
- -
20: -
100 - 7
Discrete change in distance Continuous change in distance

causes wobble in relative precision means constant relative precision

Floating
Point

Floating Point versus LNS

LNS

Lewis’ Observation:

Round to Nearest LNS

\ In(2) Better Than FP!

Margin for round error
yet still be BTFP

Floating
Point

Many possible rounding rules:

Faithful means machine unit e=2F

Floating Point versus LNS

LNS

Round to nearest (difficult with LNS)

Up

Down

Faithful (»ither up/down implementor’s discretion)
Stucinastic (like faithful but random)

BTFP (like nearest only faithful in hard cases)
Weaker than faithful (tableless Mitchell)

Lewis’ Observation:

Round to Nearest LNS

\In(2) Better Than FP!

Margin for round error
yet still be BTFP

Floating
Point

Commercial Interest in LNS

European Union:
Motorola:
Yamaha:

Boeing:

Interactive Machines,Inc.:

Advanced Rendering
Technologies:

Cambridge/Microsoft:
Univ. of Tokyo:
NVIDIA:

European Logarithmic Microprocessor (ELM)
LNS chip for satellite network

Music Synthesizer

Aircraft controls

IMI-500: Animation for Jay Jay the Jet Plane

Hardware Ray-Tracing Engine

HTK Hidden Markov Model Toolkit
N-body Gravity Pipeline (GRAPE): Gordon Bell Prize
LNS-MADAM and novel LNS summation

LNS Wordsize for Applications

/. OFDM Receiver (Wang, Lam, Tsui, Cheng, Mow)

word: 6 bits
Tableless Video decoding (Arnold and Walter)
Affordable! word: 10 bits
< LNS-MADAM Training (Zhao, Dally, et al.}\
word: 8 bits
8 Sweet spot for LNS:
Back-Propagation Training (Arnold, et al.) medium wordsize
word: 12 bits for Machine
N~ Learning
==
Feedback Control Systems (Garcia et aw
Needs word: 16 bits
Table
(Interpolate, Graphics Transformations (Lin, Tong, Zhang et al)

Cotransform) — word: 20 bits

Biological Intelligence uses Logarithms

Weber—Fechner law: ... response to sensory stimulus (light, sound,...) proportional to the
logarithm of the stimulus.

Mental numbers uses logarithmic scale.

“biological synapses...26 levels in a logarithmic number system, thus storing ... 5 bits”

1.0

|

0.8

=

10~ 10‘2 107 10°
spine head volume (pm?)
G. Buzsaki, K. Mizusek, “The log-dynamic brain: how skewed distributions affect network

operations”, Nat Rev Neurosci. 15(4):264-78, Apr. 2014.doi: 10.1038/nrn3687.

|

o 0o
)

normalized units

0
N

J. E. Volk, B Parhami, “Number Representation and Arithmetic in the Human Brain”,
https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf

T. M. Bartol, Jr., et al., “Nanoconnectomic upper bound on the variability of synaptic plasticity”, eLife,
2015. 10.7554/eLife.10778.002

https://web.ece.ucsb.edu/~parhami/pubs_folder/parh20-iemcon-arithmtic-human-brain-final.pdf

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Number Systems for Deep Neural Network
Architectures: A Survey

Ghada Alsuhli!, Vasileios Sakellariou!, Hani Saleh, Senior Member, IEEE,', Mahmoud Al-Qutayri, Senior
Member, IEEE,', Baker Mohammad, Senior Member, IEEE,!, and Thanos Stouraitis!

M. G. Amold, T. A. Bailey, J. J. Cupal, and M. D. Winkel, “On the cost
effectiveness of logarithmic arithmetic for backpropagation training
on simd processors,” in Proceedings of International Conference on
Neural Networks (ICNN’97), vol. 2. 1EEE, 1997, pp. 933-936.

B. Parhami, “Computing with logarithmic number system arithmetic:
Implementation methods and performance benefits,” Computers &
Electrical Engineering, vol. 87, p. 106800, 2020.

D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

A. Sanyal, P. A. Beerel, and K. M. Chugg, “Neural network training
with approximate logarithmic computations,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 3122-3126.

S. A. Alam, J. Garland, and D. Gregg, “Low-precision logarithmic
number systems: Beyond base-2,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 18, no. 4, pp. 1-25, 2021.

1. Kouretas and V. Paliouras, “Logarithmic number system for deep
learning,” in International Conference on Modern Circuits and Systems
Technologies (MOCAST). 1EEE, 2018, pp. 1-4.

H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased
multipliers for approximate integer and floating-point multiplication,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2623-2635, 2018.

J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512—
517, 1962.

1551

1561

1571

1581

1591

1611

[62]

(631

[64]

[65)

[66]

67

[68]

1691

701

Z. Babié, A. Avramovié, and P. Buli¢, “An iterative logarithmic
mltiplier” Microprocessors and Microsystems, vol. 35, no. 1, pp. 23
33,2011,

M. S. Ansari, B. . Cockburn, and J. Han, “A hard

‘and Test.

IEEE, 2011, pp. 1-4.
J. Zhuo, S. Dai, R. Venkatesan, M.-Y. Liu, B. Khailany, B. Dally, and

logarithmic multiplier with improved accuracy,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE). TEEE, 2019, pp.
928-931.

R. Pilipovié and P. Bulié, “On the design of logarithmic multiplier using
radix-4 Booth encoding,” IEEE access, vol. 8, pp. 64 578-64 590, 2020.
L. Harsha, B. R. Jammu, N. Bodasingi, S. Veeramachaneni, and N. M.
SK, “A low error, hardware efficient logarithmic multiplier,” Circuits,
Systems, and Signal Processing, vol. 41, no. 1, pp. 485-513, 2022.
M. S. Kim, A. A. Del Barrio, R. Hermida, and N. Bagherzadeh,
“Low-power implementation of Mitchell's approximate logarithmic
multiplication for convolutional neural networks,” in Asia and South
Pacific Design Automation Conference (ASP-DAC). TEEE, 2018, pp.
617-622.

M. S. Kim, A. A. Del Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell's approximate log multipliers for
convolutional neural networks,” IEEE Transactions on Computers,
vol. 68, no. 5, pp. 660-675, 2018.

S. S. Sarwar, S. Venkat ani, A. Raghunathan, and K. Roy,

“Multiplier-less artificial Pl

y for energy-
efficient neural computing” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 145-150.

S. Hashemi, R. I Bahar, and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications.” in IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD). ~ TEEE,
2015, pp. 418-425.

U. Lotri¢ and P. Bulié, “Logarithmic multiplier in hardware implemen-
tation of neural networks,” in International Conference on Adaptive and
Natural Computing Algorithms. ~Springer, 2011, pp. 158-168.

H. Kim, M. S. Kim, A. A. Del Barrio, and N. Bagherzadeh, “A cost-
efficient iterative truncated logarithmic multiplication for convolutional
neural networks,” in 2019 IEEE 26th Symposium on Computer Arith-
metic (ARITH). IEEE, 2019, pp. 108-111.

M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317-328,
2019.

M. S. Ansari, B. F. Cockburn, and J. Han, “An improved logarithmic
multiplier for energy-efficient neural computing” IEEE Transactions
1. 70, no. 4, pp. 614-625, 2020

1. Johnson, ing floating point for deep leaming” arXiv preprint
arXiv: 181101721, 2018.

T-B. Juang, C.-Y. Lin, and G.-Z. Lin, “Area-delay product efficient

design for convolutional neural network cireuits using logarithmic

on Computers,

number systems,” in International SoC Design Conference (ISOCC)
IEEE, 2018, pp. 170-171.

T-B. Juang, H.-L. Kuo, and K.-S. Jan, “Lower-error and area-efficient
antilogarithmic converters with bit-correction schemes,” Journal of the
Chinese Institute of Engineers, vol. 39, no. 1, pp. 57-63, 2016.

T.-B. Juang, P. K. Meher, and K.-S. Jan, “High-performance logarith-

mic converters using novel two-region bit-level manipulation schemes.”

73

74

751

1761

m

A “Low-p training in logarithmic number system
using multiplicative weight update.” arXiv preprint arXiv:2106.13914,
2021

> M. Liang, A. Guntoro, W. Stechele, and G. A
“Efficient ha = W ata repre-

Proceedings of the International

sentation with arbitrary log-bas
Conference on Computer-Aided Design, 2018, pp. 1-8.

T-Y. Lu, H-H. Chin, H-L Wu, and R.-S. Tsay, “A very compact
embedded CNN processor design based on logarithmic computing”
arXiv preprint arXiv:2010.11686, 2020.

E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“LogNet: Energy-efficient neural networks using logarithmic compu-
tion;” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2017, pp. 5900-5904.

1. Xu, Y. Huan, L-R. Zheng, and Z. Zou, “A low-power arithmetic
element for multi-base logarithmic computation on deep neural net-
works,” in IEEE International System-on-Chip Conference (SOCC).
IEEE, 2018, pp. 43-48.

1 Xu, Y. Huan, Y. Jin, H. Chu, L-R. Zheng, and Z. Zou, “Base-
reconfigurable segmented logarithmic quantization and hardware de-
sign for deep neural networks.” Journal of Signal Processing Systems,
vol. 92, no. 11, pp. 1263-1276, 2020.

T. Ueki, K. Iwai, T. Matsubara, and T. Kurokawa, “Leaming accelerator
of deep neural networks with logarithmic quantization,” in 2018 7th
International Congress on Advanced Applied Informatics (AIAAI).
IEEE, 2018, pp. 634-638.

[47] M. G. Arnold, T. A. Bailey, J. J. Cupal, and M. D. Winkel, “On the cost

effectiveness of logarithmic arithmetic for backpropagation training

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Number Systems for Deep Neural Network

Architectures: A Survey

Ghada Alsuhli!, Vasileios Sakellariou!, Hani Saleh, Senior Member, IEEE,', Mahmoud Al-Qutayri, Senior
Member, IEEE,', Baker Mohammad, Senior Member, IEEE,!, and Thanos Stouraitis!

on simd processors,” in Proceedings of International Conference on
Neural Networks (ICNN’97), vol. 2.

[S5] Z. Babi¢, A. Avramovié, and P. Bulié, “An iterative logarithmic

rs and Microsystems, vol. 35, no. 1, pp. 23—

multiplier,” Microprocesso

A “Low-p
using multplicative weight updat
2021,

number system
iv:2106.13914,

1EEE, 1997, pp. 933-936.

[57) R. Pilipovié and P. Bulic, “On the design of logarithmic multiplier using
4B e JEEE gcc 8,0p, 6457864 500

B. Parhami, “Computing wiff
Implementation methods af
Electrical Engineering, vol.
D. Miyashita, E. H. Lee,
ral networks using logarith|
arXiv:1603.01025, 2016.
A. Sanyal, P. A. Beerel, and
with approximate logarithm
Conference on Acoustics, §
IEEE, 2020, pp. 3122-3126
S. A. Alam, J. Garland, an
number systems: Beyond b3
and Code Optimization (TA
1. Kouretas and V. Palioura
learning,” in International C
Technologies (MOCAST). 1
H. Saadat, H. Bokhari, an
multipliers for approximate
IEEE Transactions on Com,
and Systems, vol. 37, no. 1
J. N. Mitchell, “Computer
logarithms,” IRE Transactior

517, 1962.

Jiawei Zhao, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, Mustafa
Ali, Ming-Yu Liu, Brucek Khailany, William J. Dally, Anima Anandkumar,
“‘LNS-Madam: Low-Precision Training in Logarithmic Number System using
Multiplicative Weight Update” arXiv preprint 2106.13914v3

Appeared in IEEE Trans. Comput. vol. 71, no. 12, pp. 3179-3190, 1 Dec.
2022, doi: 10.1109/TC.2022.3202747.

Authors are from NVIDIA, which has several related patent applications
Neural Network Accelerator Using Logarithmic-based Arithmetic
Dally; William James ; et al.

uspto.report » NVIDIA Corporation » Patent 16/549683

Inference Accelerator Using Logarithmic-based Arithmetic
Dally; William James ;

patents >

et al.

uspto.report » patents » NVIDIA Corporation » Patent 16/750823

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Emma Strubell

Abstract

nt progress in hardware and methodol-
or training neural networks has ushered
tlew generation of large networks trained
bundant data. These models have ob-

notable gains in accuracy across many
tasks. However, these accuracy improve-
5 depend on the availability of exception-

rge computational resources that neces-
I} similarly substantial energy consump-
¥ As a result these models are costly to
and develop, both financially, due to the
f hardware and electricity or cloud com-
ime, and environmentally, due to the car-

~ o1

L . S T - V- N - - VR - W

asast 2 rwtareor “ure Uiy

Ananya Ganesh
College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Andrew McCallum

\

Consumption CO2e (Ibs)
Air travel, 1 passenger, NY+SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
Training one model (GPU)
NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big)
w/ neural architecture search

Table 1: Estimated CO; emissions from training com-
mon NLP models, compared to familiar consumption.

[Khailany, B. Dally, and
rithmic number system
rint arXiv:2106.13914,

ele, and G.

rian Zimmer, Mustafa
nima Anandkumar,

INumber System using

D14v3

] 3179-3190, 1 Dec.

paten applications

02 hic-based Arithmetic

1

mic-based Arithmetic

and Systems, vol. 37, no. 1
J. N. Mitchell, “Computer
logarithms,” IRE Transactioi
517, 1962.

Dally; William James ; et al.

uspto.report> | patents>

NVIDIA Corporation »

Patent 16/750823

University of Texas at El Paso

ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

12-1-2024

Logarithmic Number System Is Optimal for Al Computations:

Theoretical Explanation of Empirical Success

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Christoph Lauter
The University of Texas at El Paso, cqlauter@utep.edu

Kristalys Ruiz-Rohena
The University of Texas at El Paso, kruizrohena@miners.utep.edu

517, 1962.

LNS Addition via Gaussian Logs

Given p =log,|P| < q =log, |Q]:
1. Letx=q-p

Hardware:
1 min/max unit (so p<q)
1 subtractor

Why it works:
1. x =log, |Q/P|

LNS Addition via Gaussian Logs

Given p =log,|P| < q =log, |Q]:

1. Letx=q-p

2. Lookup ©"(x) = log, (1+b*)
or ®°(x) = log, |1-b*|

Hardware:

1 min/max unit (so p<q)
1 subtractor
1 function approximation unit

Why it works:
1. x =log, |Q/P|
2, =log, (1+|Q/P])

®°(x) = log,|1-|Q/P]]

q-p
p

®*(g-p) —
q ®(q-p)

LNS Addition via Gaussian Logs

Given p =log,|P| < q =log, |Q]:

1. Letx=q-p

2. Lookup ©"(x) = log, (1+b*)
or ®°(x) = log, |1-b*|

3.t=p+ O(x)

Hardware:

1 min/max unit (so p<q)

1 subtractor

1 function approximation unit
1 adder

Why it works:
1. x =log, |Q/P|
2. =log, (1+|Q/P])

®(x) = log |1-|Q/P]|
3. t =log,(IP|(1+]Ql/[P])

q-p

®*(q-p)
®(g-p)

-

Gaussian Logs
Use: when signs are , also known as
®°(x) when signs are different, also known as d, (x) = log, |1-b?|
®(x) for generic Gaussian Log

Gaussian Logs
Use: when signs are , also known as
®°(x) when signs are different, also known as d, (x) = log, |1-b?|
®(x) for generic Gaussian Log

®(x) harder to approximate
due to singularity near x=0

y

y = ®(x)

<— Singularity

Gaussian Logs
Use: when signs are , also known as
®°(x) when signs are different, also known as d, (x) = log, |1-b?|
®(x) for generic Gaussian Log

®(x) harder to approximate
due to singularity near x=0

«— Singularity

Commutativity: only use x <0
P(x) = P(-x) + x
1+X = X+1 = (1+1/X) X

Left Linear Taylor Interpolation

r always
positive

actual
®(x)

P(i+A)

approx
d(i)+r O (i)

Right Linear Taylor Interpolation

r always
negative

actual

/,/é'pprox
7 ofi) - r @ (i)

Right Linear Taylor Interpolation

r always
negative

actual

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1990]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1990]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

3. Use co-transformation to
a) Convert ® withx =r_+r_to @ [Arnold 1998] :
O (ry+r)=0(r,)+ D" (r, + O(r,) — ®(r,)), wherer_>0andr, >0

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1990]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

3. Use co-transformation to
a) Convert ® withx =r_+r_to @ [Arnold 1998] :
O (ry+r)=0(r,)+ D" (r, + O(r,) — ®(r,)), wherer_>0andr, >0

b) Convert ® with x =r_-r_near 0 to ® with arg away 0 [Coleman 2000]:
O (ry+r)=0(r,) + ® (r, + ®(r) — ®(r,)), where r <0 and r, >0

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1990]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

3. Use co-transformation to
a) Convert ® withx=r_+r_to ©" [Arnold 1998] :
O (r,+r)=07(r,) (r, + @(r) —®(r,)), wher¢'r_ >0 and r_ >0

b) Convert ® with -r_near 0/to @ with arg away 0 [Coleman 2000]:
O (r *+r)=d(r,) (r + @(r)= ®(r,)), where r_<0/and r >0

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1990]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

3. Use co-transformation to
a) Convert ® withx=r_+r_to @ [Arnold 1998] :
O (ry+r)=0(r,)+ D" (r, + O(r,) — ®(r,)), wherer_>0andr, >0
b) Convert ® with x =r_-r_near 0 to ® with arg away 0 [Coleman 2000]:
Commutativity: O (r +r)=0(r,) + ®° (r +O(r) —@(r)), where r <0 and r >0

®(-r) = -1 +®(r)) =Q(r) + O (r, -r. <D(r)—<D(r
=O(r,) + O (x +<D

Problem: still needs moderate-sized table of ®(r_) and ®7(r,)

Prior solutions for @ singularity
1. Partition range of x with non-uniform A [Lewis 1989]
F (precision) 15 17 19 21 23
bits 03K 1K 2K 5K 10K
@ bits 1K 4K 10K 24K 60K
Problem: @ takes most of the ROM

2. Separate non-interpolative computation of 1+b* and log, [Chen 2003]
Problem: Number of stages proportional to precision

3. Use co-transformation to
a) Convert ® withx=r_+r_to @ [Arnold 1998] :
O (ry+r)=0(r,)+ D" (r, + O(r,) — ®(r,)), wherer_>0andr, >0
b) Convert ® with x =r_-r_near 0 to ® with arg away 0 [Coleman 2000]:
Commutativity: O (r +r)=0(r,) + ®° (r +O(r) —@(r)), where r <0 and r >0

®(-r) = -1 +®(r)) =Q(r) + O (r, -r. <D(r)—<D(r
=O(r,) + O (x +<D

Problem: still needs moderate-sized table of ®(r_) and ®7(r,)

4. Use higher-order co-transformation involving r_, r, r_....
a) Reruireivs goslication 2f 2a) [Arnold 1997] or
o) Recursive application of 3b) IColeman 2011]
Problem: challenging to formalize

Formally verified error bounds for ®*and ®" approximations

1y

T —35—=3 352 15 -1 —05 0 05 X

Leand: A programming language and a proof assistant

o Built on dependent type theory
o Enables precise mathematical definitions and rigorous proof construction.
o Mathlib: A comprehensive mathematics library
o Includes definitions and theorems crucial for formalizing diverse areas like
calculus, algebra, and analysis.
o Metaprogramming capabilities
o Enables custom tactics and automation to streamline the proof process.

Mathlib support for formalizing calculus-based proofs

Limits of Functions

o Filter.Tendsto.add, Filter.Tendsto.rpow

o HasDerivAt.lhopital zero right on Ioo

Derivatives

o deriv add, deriv sub, deriv mul, deriv div

Continuity and D|fferent|ab|I|ty

o Continuous.add, ContinuousOn.add, ContinuousAt.add

o Differentiable.add, DifferentiableOn.add,
DifferentiableAt.add

Monotonicity and Antitonicity

o monotone of deriv nonneg, antitone of deriv nonpos

o strictMono of deriv pos, strictAnti of deriv neg

Tactics

o fun prop, continuity

o norm num, positivity, linarith

o field simp, ring nf

First-order Taylor approximation

Let A be the distance of adjacent values in the look-up tables

Want to compute \ .— Pre-computed and stored
i i=A(z div A)
: : —e ¢ : :

r=1—I
= = L ep(z) = @(1) - r@ (i)

T

Look-up Tables

—e— Precomputed ®7.(i)

Error sources

br(z) = B(3) — rd/ (i)

Approximation Fixed-point
Error rounding Error

~

FIXED-POINT Or(x) = 6(1) — md(r@(i))

Error of first-order Taylor approximation of ®*

E(z) =®(z) —2z(z) = 21 —r) — (B(i) — r2'(1))

== *(x)

Y-Axis : Error of first-order Taylor approximation at x — e

—e— Precomputed ®7.(i)

@*(x) and & (x)

EA(0)
EA(i) =®(i—A) — (i) + AD'(i) Ea(et) 0.08
0.06 & | :
Ex(—21) | | \ 1o
-3A x —2A
0.04 \l
L0.02 Error increases
wiith r
l\ , _ and vanishes at table

—6A —5A —4A —3A —2A —A entries

Main proof ideas

e Consider the error function
BE@i,r) = ®(i-r1) — (2(1) — rd'(i))

as a function of two independent real-valued variable i =<0 and r = 0.

Main proof ideas

e Consider the error function
BE@i,r) = ®(i-r1) — (2(1) — rd'(i))

as a function of two independent real-valued variable i =<0 and r = 0.
o Show that £(i, r) is a strictly increasing function of r for fixed i = 0.

Main proof ideas

Consider the error function
BE@i,r) = ®(i-r1) — (2(1) — rd'(i))

as a function of two independent real-valued variable i =<0 and r = 0.
Show that £(i, r) is a strictly increasing function of r for fixed i < 0.
Show that £(i, r) is a strictly increasing function of i for fixed 0 <.

— E(i,A/2)
— E(i, Al3)
— E(i,A/4)

Main proof ideas

Consider the error function
BE@i,r) = ®(i-r1) — (2(1) — rd'(i))

as a function of two independent real-valued variable i =<0 and r = 0.
Show that £(i, r) is a strictly increasing function of r for fixed i < 0.
Show that £(i, r) is a strictly increasing function of i for fixed 0 <.
The maximum error is reached wheni=0and r = A.

EA(0)
~ q
— Er(x) =0t (x)— df (x) Ex(-A) \ 0.08
q

En(=24)

Maximum error

~_|

—6A —5A —4A —3A —2A A

Error bound for first-order Taylor approximation of ®*

Lemma 1. For all x € (—o00,0],

In 2

0+ (2) - b (2)| < EX(0) = =

—ZA2 1 O(AY).

ma Ep_bound' (hi : 1 =0) (hrl : @ <r) (hr2 : r=<A) : |[Epir| < Ep
/ [abs of nonneg (Ep r nonneg hrl)]
= 1eql := Ep 1 monotoneOn hrl hi Set.right mem Iic hi

)ave ieq2 : Ep O r < Ep © A := Ep r monotoneOn hrl (by I

Error of first-order Taylor approximation of

Y-Axis : Error of first-order Taylor approximation at x

~1-4A —1-3A -1-2A -1-A -1
Bal=l—eh) —0.05
Ea(=1-4)
-0.10
Ea()) = G~ A) - 2() +A2'(G) 2

-0.15

@

Error of first-order Taylor approximation of @

Lemma 2. Suppose that % c N (e.g, A = 2% for some
natural number k). Then for all x € (—o0, —1],

7 (2) — &7 ()| < —Ex(-1) = (In2)A% + O(A?).

mma Em bound' (hie : ie < 0) (hi : 1 = ie) (hrl :

ave hi® : 1 < 0 := by linari
rw [abs of nonneg (Em r nonneg hi@ hrl)]

> ieql := Em_i monotoneOn hrl (by simp only [Set.mem Iio]; linari

Em ie r < Em ie A := Em r monotoneOn hie hrl (by

\ave ieq2 :

Total error bound of first-order Taylor approximation

Theorem 1. Let € be the machine-epsilon of the fixed-point

representation of the LNS under consideration. Let E;\Q =
EX(0), and E;; = —Ex(—1). Then

®(z) — Pp(z)] < Epr+ (2+ Ae.

N

> FixedPoint where Approximation Error Fixed-point rounding
Error

rnd : R - R
hrnd : V X, |x - rnd X| s € ///

rnd mono : Monotone rnd

rnd 1 : rnd 1 = 1 (I~)T(:E) = 6(1) — md(r@’(i))

rnd @ : rnd 0 =0

Total error bound of first-order Taylor approximation

Theorem 1. Let € be the machine-epsilon of the fixed-point

representation of the LNS under consideration. Let E;\ZI =
EX(0), and E;; = —Ex(—1). Then

®(z) — Er(z)] < Em + (2+ A)e.

n Tp err bound (fix : FixedPoint) {x A : R} (hd : 0 <
|op x - @Tp fix fix A x| < Ep O A + (2 + A) * fix.€ := by
ave eq : ép x - &Tp fix fix A x = Ep fix fix (Ix A x) (Rx A X) :
unfold Tp fix Ep fix; rw [i sub r eq x]; ring nf
rw [eq]
apply Ep fix bound fix (rx nonneg hd x) (rx 1t delta hd x)
rw [« x neg iff ix neg hd]; exact hx

A)

Subtraction requires special treatment for-1 < x <0

—=1.5 o' | —0.5

=—10
r—14
—18

r—22
— O (x)

— (@)X [
-—30

Computing &~ () when z is close to 0 by interpolation is quite inaccurate

Coleman’s co-transformation

Assume that x in (-1, 0). Fix a small value A. > 0. ry = ({i

Write x = r. - r. with ro = i A. for some integer i< 0
such that ro < xand -A. <r.<0.

)):E:(Tb_/ra\

Q o—— — —@—o—o—o—o0—o—o— ()

Coleman’s co-transformation

Assume that x in (-1, 0). Fix a small value A. > 0. ry = ([iw = 1) Ay
Write x = rv - r. with r. = i A. for some integer i <0 B
such that r. < xand -A.<r.<0. WENTE

Compute @ as O (x) = D (ro - r.) = D(ro) + D (x + D(ra) - D(1v)).

Coleman’s co-transformation

Assume that x in (-1, 0). Fix a small value A. > 0. ry = ([* w = 1) Ay
Write x = rv - r. with ro = i A. for some integer i <0

such that r. < xand -A. < r.<0. WENTE

Compute @ as O (x) = D (ro - r.) = D(ro) + D (x + D(ra) - D(1v)).

Requires 2 tables: T. which contains all values of fixed-point values x in [-
A., 0) and Ts which contains all integer multiples r. =i A. in (-1, A.).

))x:(rb B ’ra \

o o— — —@—o—o—o—o0—o—o— ()

\Look—up To Look-up T-

O () =P (rp—1s) =P (rp) + O~ (a: + @ (rq) — CD_(rb))

Coleman’s co-transformation

For x in (-1, 0) consider 2 cases:

1) xin [-A., 0). Take the value of ®(x) directly from table T..

2) xin (-1, -A.). Compute r: and r., @ (r:) is taken from table To, D(r.) is
taken from table T, and x + @7(r.) - D (rs) < -1 is computed with other
approximation techniques (e.g., Taylor approximation).

)):E:(Tb_/ra\

Q o—— — —@—o—o—o—o0—o—o— ()

\Look—up To Look-up T

O () =P (rp—1s) =P (rp) + O~ (a: + @ (rq) — CID_(rb))

Less than -1 Close to 0

Coleman’s co-transformation

e Problem: Too many values in tables T. and T, when € is small.

Example: € = 2732, A\,= 271,
Tables T. and T-have approximately 2'° values each.

Coleman’s co-transformation

Problem: Too many values in tables T. and T, when € is small.

Example: € = 2732, A\.= 271°,
Tables T. and Tshave approximately 2'° values each.

Solution: Define A, > A. and apply co-transformation technique twice.

Compute r. such that x = rc - ra» with re = j As with j < 0 and rc < x,
-Av = ra < 0. Apply co-transformation to r.. and get roo = ro - 1, 1o < rap,
-A.<r.<0.

Requires one more table T..
Tables T., Tsand T-have approximately 2** values each.

Coleman’s co-transformation

To compute @7 (x) consider 3 cases:

1) -A. =x<0: D(x)is taken from T..
2) xin [-As, -A:): D(x) is computed as O (ro - r.) = D(rs) + D (x + D(ra) - D(rs)).
3) xin (-1, -As): @ (x) is computed as
D (x) = P(rc- ran) = P(ro) + P (x + D(ra) - D(ro))
Here ®(r.) is taken from table T. and @ (r.) = @ (rs - 1) is computed as in
case 2.

Coleman’s co-transformation

To compute @ (x) consider 3 4 cases:

1) -A. = x<0: D(x)is taken from T..

2) xin [-As, -A:): D7(x) is computed as O (ro - r.) = D(rs) + P (x + D(r.) -
D(r)).

3) xin (-1, -Av): @ (x) is computed as
D(x) = D(rc - ras) = P(re) + P (x + P (ra) - P (1))
Here ®(r.) is taken from table T. and @ (r.) = @ (rs - 1) is computed as in
case 2.

4y xin (-1, -As) and ra < -A.. In this case, we cannot compute @ (r.) as in
case 2 because r. + ©(r.) - D (r:) could be > -1. Take the value of ®(r.s)
directly from T..

Formalization revealed this additional case which was missing in our original
informal proof.

Co-transformation error bound

Co-transformation formula with rounding:

®~(z) =rnd (2~ (1)) + O~ (z +rnd (27 (ry)) —rnd (27 (rs)))

An approximation of A rounded value of ®7(x) A rounded value of ®(x)
®(x) for x = -1 stored in table To stored in table T.

Co-transformation error bound

Theorem 2. Let € be the machine-epsilon of the fixed-point representation of the LNS
under consideration and Eg- be the error bound of interpolating of ®~ in the range
(—o0, 1]. Assume also that A, > 4€ and Ay > 8¢+2FEg-. The error bound of computing
&~ (x) when x € (—1,0) using the co-transformation technique is:

O (b,)~ B (1) - Eyp-Fe

where

Er,=®"(—-1—2¢) —® (—1)+ Ep- + 2.

cotransformation_err_bound (fix : FixedPoint)
FunApprox &m (Set.Iic (-1)))
: 0 < Aa) (hb : 0 < Ab)

: 4 * fix.e = Aa)
: 8 * fix.e + 2 * de.err s Ab) : .
- Ek2 := 2 * fix.e + ém (-1 - 2 * fix.g€) - ém (-1) + de.err
|#m x - Cotrans fix ée Aa Ab x| = fix.e + ém (-1 - Ek2) - ém (-1) + de.err

Co-transformation error bound (simplified)

Theorem 2. Let € be the machine-epsilon of the fixed-point representation of the LNS
under consideration and Eg- be the error bound of interpolating of ®~ in the range
(—o0, 1]. Assume also that A, > 4e and Ay > 8¢+2FEg-. The error bound of computing
&~ () when x € (—1,0) using the co-transformation technique is:

2E(I)— + 56

n cotransformation err bound' (fix : FixedPoint)
FunApprox &m (Set.Iic))
: 0 < Aa) (hb : 0 < Ab)
hAa : 4 * fix.g€ < Aa)
hAb : 8 * fix.g€ + 2 * de.err =
|#m x - Cotrans fix ée Aa Ab Xx|

(®e
(ha
(
(

+ 2 * de.err := D\

log,(error)

_12.

—131

~14

-15

_16.

17

_18.

—19

—20

—211

—22

—23

Exhaustive verification

—— Taylorot
—— Taylor ®~
—— Co-transformation

1dashed lines = theoretical bound
Isolid lines = exhaustive test

-15 -14 ~13 =12 -11 -10 -9

For given A,
d* two bits
more accurate
than @ take
more memory
for same
accuracy

£ = 22 which
explains the
“hockey stick”

log,(error)

_12.

—131

-14

-15

Exhaustive verification

—— Taylorot
—— Taylor ®~
—— Co-transformation

1dashed lines = theoretical bound
Isolid lines = exhaustive test

shape |

10 -9

For given A,
d* two bits
more accurate
than @ take
more memory
for same
accuracy

12

—131

14

-15

log,(error)

£ = 22 which
explains the
“hockey stick”

Exhaustive verification

—— Taylorot
—— Taylor ®~
—— Co-transformation

dashed lines = theoretical bound

Isolid lines = exhaustive test

shape |

For A > ¢,

-15 -14 ~13 =12 -11 -10 -9
logx(A)

-6

For given A,
d* two bits
more accurate
than @ take
more memory
for same
accuracy

log,(err) =2 log (A) = Iogz(Az) + constant: known quadratic err of linear interpolation

Results

Formally verified error bounds for first order Taylor approximations of ®*
and ¢,

Formally verified error bounds for co-transformation techniques for
computing @ near zero.

A library of Lean 4 definitions and lemmas for error analysis of LNS:

https://github.com/soarlab/RigorousErrorLNS

Future work

o Developing additional Lean 4 tactics and error-analysis lemmas.
o Tighter bounds for co-transformation.

e Error analysis for LNS variations:
o Error Correction (EC)/quadratic

o Other co-transformation [Arnold 1997]
s unlike [Coleman 2000] does not use less accurate @~ interpolation

Bases other than two
Guard bits
Varying As
Table-less LNS design

O o o o

Exhaustive verification with directed rounding

I &
15 Taylor ® g
—— Taylor o~ ’

—-137 —— Cotransformation y

211

—22

—23

-15 -14 ~13 -12 -4 -10 -9 -8) -6
log(A)

Metaprogramming - developing tactics

elab "get_deriv" t:term loc:(deriv_at)? : tactic => do
let realType := Expr.const ~"Real []
let realSetType « mkAppM " ~Set #[realType]
withMainContext do
let t « Tactic.elabTerm t (some $.forallE “x realType realType .default)
let expr « lambdaTelescope t (fun args e => toRExpr args e)
let hyp := « match loc with
| some loc => do
atch loc with
“(deriv_at| at $x) => do
let x « Tactic.elabTerm x (some realType)
mkAppM "~ expr_hasDerivAt #[expr, x]
| “(deriv_at| within $s) => do
let s « Tactic.elabTerm s (some realSetType)
mkAppM " “expr_diff_deriv_on #[expr, s]
| _ => throwUnsupportedSyntax
| _ => mkAppM "~ expr_diff _deriv #[expr]
let hypType <« inferType hyp
let (args, _, concl) « forallMetaTelescope hypType
liftMetaTactic fun mvarId => do
let newId <« mvarId.assert "h concl (<« mkAppM' hyp args)
let (_, newId) « newId.introlP
s.toList.map Expr.mvarId! ++

