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Double Extended Precision

No correctly rounded routines available in double extended precision.
Existing routines are slow.

Figure by BillF4, CC BY-SA 3.0
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Strategy

We follow Ziv’s method to achieve correct rounding:
Fast path

≈ 80 bits precision
Too close to 64 bit
rounding boundary?

Do accurate path
and/or lookup

yes

Return value

no

We implement the fast path with double precision arithmetic, avoiding x87 instructions.
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Current state-of-the-art

GNU libc, development version, with patch to benchmark some long double functions,
on Intel Core i7-8700 with gcc 14.2.0. Timings in cycles.

function min mean max
fmal 556 678 1030
expl 137 142 351
log2l 57 174 554
powl 700 743 1156
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Double-double arithmetic

Double-double arithmetic uses pairs (a, b) ∈ F2
64 to represent a + b.

we have product, sum primitives with explicit error bounds
when |b| < ulp(a) table lookups are easy

We can expect ≈ 53× 2 = 106 bits of precision, more than long double’s 64.
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Converting from double extended precision

Input: x ∈ F80
Output: a, b ∈ F64 with |b| < ulp(a) and a + b = x

1: a← ◦64(x)
2: b ← ◦64(x − ◦80(a))

This only works if the exponent of x fits in the double exponent range.
Implemented routines deal with large/small inputs differently:

exponentials saturate to 0, +∞ or 1
logarithms keep track of x ’s exponent separately
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Converting to double extended precision

Starting from (a, b) ∈ F2
64 with |b| < ulp(a):

1. Compute q ≈ a + b on 128 bits
2. Round q to long double and compute distance to rounding boundary
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Computing q

Input: a, b ∈ F64 not denormals with |b| < ulp(a)
Output: q = (qs , qe , qm) ∈ F128 such that (−1)as 2qe−127 · qm ≈ a + b

1: qe ← ae
2: qm ← 2127 + 264+11am + (−1)bs−as (263 + 211bm)264+be−ae

3: if qm < 2127 then
4: qe ← qe − 1
5: qm ← 2qm

return q = (as , qe , qm)
Assumption |b| < ulp(a) ensures no overflow in line 2.
There is a small error due to truncation.

Correct rounding in Double Extended Precision 8/18



Rounding q

Input: q = (qs , qe , qm)
Output: (y , δ) ∈ F64×Z64 where y rounds q upwards and δ is a scaled rounding error.

1: write qm = mh264 + mℓ with 0 ≤ mh, mℓ < 264

2: δ ← mℓ cmod 264 ▷ −263 ≤ δ < 263

3: if mℓ ̸= 0 and qs > 0 then
4: mh ← mh + 1
5: if mh = 264 then
6: qe ← qe + 1, mh ← 263

7: δ ← δ/2 ▷ rounded towards zero
8: if qe ≥ 16384 then
9: return ((−1)qs∞, δ)

10: return (F64(qs , qe , mh), δ)
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Evaluation strategy

Inputs with exponent < −64 or ≥ 14 round trivially.
Else, let x ′ = x/ log 2 and use

x ′ = n + f
220 + (yh + yℓ)

ex = 2x ′ = 2n · 2f /220 · 2yh+yℓ
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Splitting x ′

x ′ = n + f
220 + (yh + yℓ)

1. Split x as double-double
2. Multiply by 1/ log 2 as double-double
3. Clobber the high bits to get n, f
4. Normalize the remainder as yh, yℓ with |yℓ| < ulp(yh)
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Evaluating the exponential

ex = 2x ′ = 2n · 2f /220 · 2yh+yℓ

1. 2f /220 is computed with a few table lookups
2. 2yh+yℓ is evaluated by a degree 3 polynomial

All computations are done in double-double. We add n to the final exponent, after
rounding (subnormals are treated apart).
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Reconstruction

We round the previous double-double value to extended precision.
We compare |δ| to the relative computation error:

If |δ| > 241 we can guarantee correct rounding
Otherwise, we go to the accurate path.

In practice, the test fails with probability ≈ 2−22.
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Computing hard-to-round cases

We use the BaCSeL software tool (https://gitlab.inria.fr/zimmerma/bacsel).

for −24 < x < −2−65 and 2−65 ≤ x < 0x1.484p+9, we found 158,662 inputs
with at least 54 identical bits after the round bit. Apart special cases, the largest
number is 75 for x = -0x1.625ac7bfa54aba72p-14.
for x ≤ −24 and 0x1.484p+9 ≤ x , we search hard-to-round cases with at least
101 identical bits after the round bit. We found none.
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Accurate path

Same scheme as the fast path.
Home-made 192-bit arithmetic (using 3 integer words of 64 bits).
Relative error bound is 2−167.006.
Reuse the fast path lookup tables using Markstein’s “accurate table” trick.
Use the 7th degree Taylor polynomial.
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Implementation

We implemented using this scheme in CORE-MATH:

expl, exp2l

log2l

powl, which was more challenging due to the dynamic ranges involved. b

Other functions (cbrtl, hypotl, rsqrtl) were implemented using a different scheme.
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Performance

expl powl log2l
CORE-MATH 47.5 165.7 44.9
Intel Math Library (2025.0.0) 64.2 288.4 83.1
GNU Libc 2.40 127.1 761.6 65.0
Openlibm 0.8.5 151.5 640.1 151.1
Musl 1.2.5 115.0 546.5 47.3

Figure: Reciprocal throughput in cycles on an Intel Xeon Silver 4214 and GCC 14.2.0

Our routines only use a few kilobytes of lookup tables.
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Conclusion

We implemented correctly rounded routines for double extended precision
Avoiding x87 enables fast and more portable double extended precision routines
Might be used even on processor without double extended support
Still many functions to implement...
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