
ARITH 2025

Double-Word Decomposition
in a Combined FP16, BF16 and FP32

Dot Product Add Operator

Florent de DinechinBenoît Dupont de Dinechin

Orégane Desrentes



Context

Context

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 2 . 1



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers

• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)
• These days:

• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 1



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers r = ◦ (x + y) r = ◦ (x × y)
• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )

• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)
• These days:

• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 2



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers r = ◦ (x + y) r = ◦ (x × y)
• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)

• two operations in one instruction: faster
• one single rounding: more accurate

• These days:
• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 3



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers r = ◦ (x + y) r = ◦ (x × y)
• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)

• These days: r = ◦

(
z +

N−1∑
i=0

xi × yi

)
(our ARITH 2023 paper)

• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 4



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers r = ◦ (x + y) r = ◦ (x × y)
• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)

• These days: r ≈ z +
N−1∑
i=0

xi × yi (GPUs, ML/AI accelerators)

• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 5



Context

A short and biased history of floating point units

• ... with a focus on adders and multipliers r = ◦ (x + y) r = ◦ (x × y)
• In 1985, IEEE-754 standardizes formats and rounding ◦ (. . . )
• In the 90s, FMA (fused multiply add): r = ◦ (x × y + z)

• These days: r ≈ z +
N−1∑
i=0

xi × yi (GPUs, ML/AI accelerators)

• for some fixed N (typically N =8 to 32, and growing)

• with mixed-precision for accurate chaining of such operations:
xi and yi in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

• presented as a small matrix-matrix-accumulate (MMA) unit: D = C + A × B
(some call it “tensor operator”)
to balance compute (fast) and data access (slower):

O(n3) compute for O(n2) data access, where n is the matrix dimension

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 3 . 6



Context

Example: MPPA3 V2 Coolidge™ processing element (PE)

A 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor
VLIW Core

• Scalar: 32-bit and 64-bit INT & FP
• SIMD: 8× 8-bit, 4× 16-bit, 2× 32-bit
• 128-bit and 256-bit SIMD operations in a VLIW bundle
• 256-bit load/store unit with masking

Tensor Coprocessor
• 256-bit load/store unit with masking
• Matrix zip/unzip & transpose
• Blocks of 256-bit registers used as circular buffer or as

lookup table

In short: all the tensor blah blah is really about (clever) data shuffling,
the arithmetic is based on Mixed-Precision Dot Product and Add operators.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 4 . 1



Context

Example: MPPA3 V2 Coolidge™ processing element (PE)

A 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor
VLIW Core

• Scalar: 32-bit and 64-bit INT & FP
• SIMD: 8× 8-bit, 4× 16-bit, 2× 32-bit
• 128-bit and 256-bit SIMD operations in a VLIW bundle
• 256-bit load/store unit with masking

Tensor Coprocessor
• 256-bit load/store unit with masking
• Matrix zip/unzip & transpose
• Blocks of 256-bit registers used as circular buffer or as

lookup table

In short: all the tensor blah blah is really about (clever) data shuffling,
the arithmetic is based on Mixed-Precision Dot Product and Add operators.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 4 . 2



Context

Arithmetic formats for machine learning

FP32

E5M10 (FP16)

sign bit
exponent mantissa fraction

E7M0
E6M1

E3M4
E2M5
E1M6
E0M7

E5M2
E4M3

E8M7 (BF16)

E8M10 (TF32)

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 5 . 1



Context

Arithmetic formats for machine learning

FP32

E5M10 (FP16)

sign bit
exponent mantissa fraction

E7M0
E6M1

E3M4
E2M5
E1M6
E0M7

E5M2
E4M3

E8M7 (BF16)

E8M10 (TF32)

• FP8 (aka E5M2 and E4M3)
• sum-of-products computed in a

much wider format (Kulisch-like)
• internal size that fits all: E5M3

FP8 have a separate unit in Coolidge
(see ARITH 2023)
→ not discussed in this work

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 5 . 2



Context

Arithmetic formats for machine learning

FP32

E5M10 (FP16)

sign bit
exponent mantissa fraction

E7M0
E6M1

E3M4
E2M5
E1M6
E0M7

E5M2
E4M3

E8M7 (BF16)
E8M10 (TF32) • FP16/BF16

• internal size that fits all inputs:
E8M10 (aka NVIDIA TF32)

• sum-of-products computed in a
much wider format

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 5 . 3



Context

Oh, a new toy! Let us play with it!

The toy: this tensor core computing the mixed-precision (16/32-bit) MMA: R = C + AB.
Can we use it to compute a matrix product in FP32?
Of course we can (almost).

An old idea: Double-Word Arithmetic

Basic idea: represent a high-precision value x as a pair of FP values xh + x l

xh

+ x l

xrepresents

(each mantissa includes
an implicit leading 1)

... plus classical trick: the sign bit of x l provides an extra bit.

xh

+ x l

represents

Example:
double-FP16 ≈ E5M21

(FP32 is E8M23)

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 6 . 1



Context

Oh, a new toy! Let us play with it!

The toy: this tensor core computing the mixed-precision (16/32-bit) MMA: R = C + AB.
Can we use it to compute a matrix product in FP32?
Of course we can (almost).

An old idea: Double-Word Arithmetic

Basic idea: represent a high-precision value x as a pair of FP values xh + x l

xh

+ x l

xrepresents

(each mantissa includes
an implicit leading 1)

... plus classical trick: the sign bit of x l provides an extra bit.

xh

+ x l

represents

Example:
double-FP16 ≈ E5M21

(FP32 is E8M23)

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 6 . 2



Context

In terms of software

To accelerate an FP32 matrix multiplication R = AB,
• decompose A and B as the unevaluated sum of FP16 matrices:

A ≃ Ah + Al (1)

B ≃ Bh + Bl (2)

Algorithm for this:

Ah = toFP16(A) (rounding here) (3)

Al = toFP16(A − toFP32(Ah)) (and here). (4)

• then use a mixed-precision MMA

R ≈ AhBh + AhBl + AlBh + AlBl (5)

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 7 . 1



Context

In terms of dot products

A mixed-precision dot-product-add of size N on FP16 vectors (xi , yi): r = a +
N−1∑
i=0

xiyi

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

x13

y13

x14

y14

x15

y15
a +

accelerates a dot-product-and-add of size N/4 on FP32 data (ui , vi): r = a +

N/4−1∑
i=0

uivi

• Decompose ui = uh
i + ul

i and vi = vh
i + v l

i
• Now ∀i uivi = (uh

i + ul
i )× (vh

i + v l
i ) = uh

i vh
i + uh

i v l
i + ul

i v
h
i + ul

i v
l
i

• Use the mixed-precision FP16 dot-product-and-add

uh
0 uh

0 ul
0 ul

0 uh
1 uh

1 ul
1 ul

1 uh
2 uh

2 ul
2 ul

2 uh
3 uh

3 ul
3 ul

3

vh
0 v l

0 vh
0 v l

0 vh
1 v l

1 vh
1 v l

1 vh
2 v l

2 vh
2 v l

2 vh
3 v l

3 vh
3 v l

3

a +

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 8 . 1



Context

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of
quasi-FP32 matrix operations.

Quasi-FP32 is not FP32
1 range issues: FP16 exponent is more limited than FP32
2 precision issues: emulation of 1+21 mantissa bits, whereas FP32 is 1+23.

Double BF16 instead solves range issues, but makes precision issues worse...
Triple BF16 lowers performance to X/9 TFlop/s (and 9 is not a hardware-friendly factor)

This paper:
• Proposition of minimal hardware support solving both problems
• (with decomposition of x into xh + x l in hardware)
• evaluation of its overhead.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 9 . 1



Context

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of
quasi-FP32 matrix operations.

Quasi-FP32 is not FP32
1 range issues: FP16 exponent is more limited than FP32
2 precision issues: emulation of 1+21 mantissa bits, whereas FP32 is 1+23.

Double BF16 instead solves range issues, but makes precision issues worse...
Triple BF16 lowers performance to X/9 TFlop/s (and 9 is not a hardware-friendly factor)

This paper:
• Proposition of minimal hardware support solving both problems
• (with decomposition of x into xh + x l in hardware)
• evaluation of its overhead.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 9 . 2



Context

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of
quasi-FP32 matrix operations.

Quasi-FP32 is not FP32
1 range issues: FP16 exponent is more limited than FP32
2 precision issues: emulation of 1+21 mantissa bits, whereas FP32 is 1+23.

Double BF16 instead solves range issues, but makes precision issues worse...
Triple BF16 lowers performance to X/9 TFlop/s (and 9 is not a hardware-friendly factor)

This paper:
• Proposition of minimal hardware support solving both problems
• (with decomposition of x into xh + x l in hardware)
• evaluation of its overhead.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 9 . 3



The proposed architecture

The proposed architecture

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 10 . 1



The proposed architecture

Proposed minimum intermediate format: E9S12

• Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
• What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ?

First idea: E8M11 (12-bit significand with the implicit 1).

Why S12 and not M11?
Because E8M11 tends to imply a normalized format with an implicit 1.
Not mandatory here! When decomposing a FP32 x = xh + x l , why round xh to the
nearest? Why normalize x l? Just splitting the bit vector is cheaper.
In short, S12 stands for a 12-bit significand, possibly un-normalized.

Why E9 and not E8?
The decomposition of an FP32 with a very small exponent entails an even smaller
exponent for x l : we need one more exponent bit to capture this case. This will be cheap.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 11 . 1



The proposed architecture

Proposed minimum intermediate format: E9S12

• Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
• What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ?

First idea: E8M11 (12-bit significand with the implicit 1).

Why S12 and not M11?
Because E8M11 tends to imply a normalized format with an implicit 1.
Not mandatory here! When decomposing a FP32 x = xh + x l , why round xh to the
nearest? Why normalize x l? Just splitting the bit vector is cheaper.
In short, S12 stands for a 12-bit significand, possibly un-normalized.

Why E9 and not E8?
The decomposition of an FP32 with a very small exponent entails an even smaller
exponent for x l : we need one more exponent bit to capture this case. This will be cheap.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 11 . 2



The proposed architecture

Proposed minimum intermediate format: E9S12

• Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
• What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ?

First idea: E8M11 (12-bit significand with the implicit 1).

Why S12 and not M11?
Because E8M11 tends to imply a normalized format with an implicit 1.
Not mandatory here! When decomposing a FP32 x = xh + x l , why round xh to the
nearest? Why normalize x l? Just splitting the bit vector is cheaper.
In short, S12 stands for a 12-bit significand, possibly un-normalized.

Why E9 and not E8?
The decomposition of an FP32 with a very small exponent entails an even smaller
exponent for x l : we need one more exponent bit to capture this case. This will be cheap.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 11 . 3



The proposed architecture

In details
E9S12 consists of
• a sign bit
• 5 flag bits (isNormal, isInf, isNaN, isSigNaN, isZero)
• 9 exponent bits, with a fancy bias of 139=127+12
• 12 significand bits, not necessarily normalized

Conversion in two steps:
• unpack the floating-point format

• extract exponent and fraction fields,
• decode all the flags
• prepend implicit bit to significand

• convert to E9S12
• zero-pad significand
• adjust exponent bias

Example for FP16

Unpack FP16

Convert FP16 to E9S12

X
FP16

sign flags
5

exp
5

sig
11

sign flags

5

exp

9

sig

12

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 12 . 1



The proposed architecture

In more details, it is just simple

Unpack (wE ,wF )
X

Xsign

1

wE

wF

̸==

0. . . 01. . . 1

Xsig

wF + 11 0

1

Xexp

wE

Special Flags

=

0. . . 0

Xflags

5

Conversion in two steps:
• unpack the floating-point format

• extract exponent and fraction fields,
• decode all the flags
• prepend implicit bit to significand

• convert to E9S12
• adjust exponent bias
• zero-pad significand

Convert FP16 to E9S12

Xsign Xflags

+

124

Xexp

9

Xsig

12

0

Convert BF16 to E9S12

Xsign Xflags

+

12

Xexp

9

Xsig

12

0000

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 13 . 1



The proposed architecture

Unpacking FP32 into a double-E9S12

Unpack FP32 into double E9S12

u

Unpack FP32

32

24

= =

0. . . 0 0. . . 0
12 12

uh
sig

12

ul
sig

12

uh
sign ul

sign

Special Flags

isNormal
isInf
isNaN
isSigNaN

uh
flags ul

flags

8

ul
exp

9

0
+

12

uh
exp

9

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 14 . 1



The proposed architecture

Overall multiplexing of each group of 4 inputs

uh
0 uh

0 ul
0 ul

0 uh
1 uh

1 ul
1 ul

1 uh
2 uh

2 ul
2 ul

2 uh
3 uh

3 ul
3 ul

3

vh
0 v l

0 vh
0 v l

0 vh
1 v l

1 vh
1 v l

1 vh
2 v l

2 vh
2 v l

2 vh
3 v l

3 vh
3 v l

3

a +

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 15 . 1



The proposed architecture

Overall multiplexing of each group of 4 inputs
isBF16isFP32

Unpack FP16 Unpack FP16Unpack BF16 Unpack BF16
Unpack FP32

into
double E9S12

Convert FP16
to E9S12

Convert FP16
to E9S12

Convert BF16
to E9S12

Convert BF16
to E9S12

. . .

. . .

. . .

u

32

x0

16

x3

16

x ′
0 x ′

1 x ′
2 x ′

3

00 01 00 01 00 01 00 01

ul

1010

uh

1010

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 15 . 2



The proposed architecture

The sum of product itself

(variant that registers the large accumulator)

max

rshift0

−
rshiftN−1

−
. . .

Emax

E0 EN−1M0 MN−1. . .

∑. . .81

normalizer

round and pack to float

−

Emax lzc

rshiftAcc

−

81 + 16

81 + 16

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 16 . 1



The proposed architecture

The sum of product itself

(variant that registers the large accumulator)

max

rshift0

−
rshiftN−1

−
. . .

Emax

E0 EN−1M0 MN−1. . .

∑. . .81

normalizer

round and pack to float

−

Emax lzc

rshiftAcc

−

81 + 16

81 + 16

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 16 . 2



The proposed architecture

The sum of product itself (variant that registers the large accumulator)

max

rshift0

−
rshiftN−1

−
. . .

Emax

E0 EN−1M0 MN−1. . .

∑. . .81

normalizer

round and pack to float

−

Emax lzc

rshiftAcc

−

81 + 16

81 + 16

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 16 . 3



The proposed architecture

Choices of parameters

• Correctly rounded FP16 dot product of size N requires L = 81 + log2(N) bits.
• We round it up to L = 81 + 16

so we can iterate on the operator for N up to 65000.
This is much more accurate than the competition...

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 17 . 1



The proposed architecture

Executive summary

With this architecture:
• Single correct rounding of the exact FP16 dot product with FP32 add
• Full subnormal support (easy since E9M12 is not necessarily normalized)

• NVIDIA flushes TF32 subnormals to zero
• Results accurate to 81+16-bit for the other dot-products-and-add variants

There is a cheaper variant where we loop back an FP32
• Support of FP32 FMA (Fused Multiply and Add)
• But less accurate when using the operator iteratively

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 18 . 1



Evaluation

Evaluation

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 19 . 1



Evaluation

A trade-off between area and power

Combinatorial operators running a 333MHz to emulate pipeline at 1GHz

Operator Area Power (mW)
(µm2) Leakage Total

Baseline: DP16FP16AFP32 1796 .000477 1.83
DP16FP16/BF16AFP32 2343 .000602 2.11

DP4FP32AFP32 1865 .000476 1.87
DP4FP32AFP32 + DP16FP16/BF16AFP32 4208 .001078 2.11

proposed 2504 .000657 2.62

• FP32 support adds 40% area to a DP16FP16AFP32
• Compared to two separate accelerators, the combined operator

• saves 68% of area
• saves power when idle (leakage)
• but consumes more power when active: 25% for 16-bit vectors, or 43% for FP32.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 20 . 1



Questions ?

Questions ?

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin Double-Word Decomposition in a Combined DPA Operator 21 . 1


	Context
	The proposed architecture
	Evaluation
	Questions ?

