ARITH 2025

Double-Word Decomposition in a Combined FP16, BF16 and FP32 **Dot Product Add Operator**

Orégane Desrentes

Benoît Dupont de Dinechin

Florent de Dinechin

Context

• ... with a focus on adders and multipliers

- ... with a focus on adders and multipliers $r = \circ (x + y)$ $r = \circ (x \times y)$
- In 1985, IEEE-754 standardizes formats and rounding $\circ (\dots)$

- ... with a focus on adders and multipliers $r = \circ (x + y)$ $r = \circ (x \times y)$
- In 1985, IEEE-754 standardizes formats and rounding $\circ \left(\ldots \right)$
- In the 90s, FMA (fused multiply add): $r = \circ (x \times y + z)$
 - two operations in one instruction: faster
 - one single rounding: more accurate

- ... with a focus on adders and multipliers $r = \circ (x + y)$ $r = \circ (x \times y)$
- In 1985, IEEE-754 standardizes formats and rounding $\circ \left(\ldots \right)$
- In the 90s, FMA (fused multiply add): $r = \circ (x \times y + z)$

• These days:
$$r = \circ \left(z + \sum_{i=0}^{N-1} x_i \times y_i \right)$$
 (our ARITH 2023 paper)

- for some fixed N (typically N = 8 to 32, and growing)
- with mixed-precision for accurate chaining of such operations:
 x_i and y_i in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

- ... with a focus on adders and multipliers $r = \circ (x + y)$ $r = \circ (x \times y)$
- In 1985, IEEE-754 standardizes formats and rounding $\circ \left(\ldots \right)$
- In the 90s, FMA (fused multiply add): $r = \circ (x \times y + z)$

...

• These days:
$$r \approx z + \sum_{i=0}^{N-1} x_i imes y_i$$
 (GPUs, ML/AI accelerators)

- for some fixed N (typically N = 8 to 32, and growing)
- with mixed-precision for accurate chaining of such operations:
 x_i and y_i in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)

- ... with a focus on adders and multipliers $r = \circ (x + y)$ $r = \circ (x \times y)$
- In 1985, IEEE-754 standardizes formats and rounding $\circ \left(\ldots \right)$
- In the 90s, FMA (fused multiply add): $r = \circ (x \times y + z)$

A/ 4

• These days:
$$r \approx z + \sum_{i=0}^{N-1} x_i \times y_i$$
 (GPUs, ML/AI accelerators)

- for some fixed N (typically N = 8 to 32, and growing)
- with mixed-precision for accurate chaining of such operations:
 x_i and y_i in a small format, z and r in a wider format (typically 8/16 bits, or 16/32 bits)
- presented as a small **matrix-matrix-accumulate (MMA)** unit: $D = C + A \times B$ (some call it "tensor operator")

to balance compute (fast) and data access (slower):

 $O(n^3)$ compute for $O(n^2)$ data access, where *n* is the matrix dimension

Context

Example: MPPA3 V2 Coolidge™ processing element (PE)

A 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor

VLIW Core

- Scalar: 32-bit and 64-bit INT & FP
- SIMD: 8×8 -bit, 4×16 -bit, 2×32 -bit
- 128-bit and 256-bit SIMD operations in a VLIW bundle
- 256-bit load/store unit with masking

Tensor Coprocessor

- 256-bit load/store unit with masking
- Matrix zip/unzip & transpose
- Blocks of 256-bit registers used as circular buffer or as lookup table

Context

Example: MPPA3 V2 Coolidge™ processing element (PE)

A 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor

VLIW Core

- Scalar: 32-bit and 64-bit INT & FP
- SIMD: 8×8 -bit, 4×16 -bit, 2×32 -bit
- 128-bit and 256-bit SIMD operations in a VLIW bundle
- 256-bit load/store unit with masking

Tensor Coprocessor

- 256-bit load/store unit with masking
- Matrix zip/unzip & transpose
- Blocks of 256-bit registers used as circular buffer or as lookup table

In short: all the tensor blah blah is really about (clever) data shuffling, the arithmetic is based on **Mixed-Precision Dot Product and Add** operators.

Orégane Desrentes, Benoît Dupont de Dinechin, Florent de Dinechin

Arithmetic formats for machine learning

Arithmetic formats for machine learning

Arithmetic formats for machine learning

• FP16/BF16

- internal size that fits all inputs: E8M10 (aka NVIDIA TF32)
- sum-of-products computed in a much wider format

Oh, a new toy! Let us play with it!

The toy: this tensor core computing the mixed-precision (16/32-bit) MMA: R = C + AB. Can we use it to compute a matrix product in FP32? Of course we can (almost).

An old idea: Double-Word Arithmetic

Basic idea: represent a high-precision value x as a pair of FP values $x^{h} + x^{l}$

(each mantissa includes an implicit leading 1)

Oh, a new toy! Let us play with it!

The toy: this tensor core computing the mixed-precision (16/32-bit) MMA: R = C + AB. Can we use it to compute a matrix product in FP32? Of course we can (almost).

In terms of software

To accelerate an FP32 matrix multiplication R = AB,

• decompose A and B as the unevaluated sum of FP16 matrices:

$$A \simeq A^h + A^l$$
 (1)
 $B \simeq B^h + B^l$ (2)

Algorithm for this:

$$A^h =$$
toFP16(A) (rounding here) (3)
 $A^l =$ toFP16(A - toFP32(A^h)) (and here). (4)

then use a mixed-precision MMA

$$m{R}pproxm{A}^hm{B}^h+m{A}^hm{B}^l+m{A}^lm{B}^h+m{A}^lm{B}^l$$

(5)

In terms of dot products

A mixed-precision dot-product-add of size *N* on FP16 vectors (x_i, y_i) : $r = a + \sum x_i y_i$

2	_	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
a	+	y 0	y 1	y 2	y 3	y 4	y 5	y 6	y 7	y 8	y 9	y 10	y 11	y 12	y 13	y 14	y 15

accelerates a dot-product-and-add of size N/4 on FP32 data (u_i, v_i): $r = a + \sum_{i=1}^{n} u_i v_i$

- Decompose $u_i = u_i^h + u_i^l$ and $v_i = v_i^h + v_i^l$
- Decompose $u_i = u''_i + u'_i$ and $v_i = v''_i + v'_i$ Now $\forall i \quad u_i v_i = (u_i^h + u'_i) \times (v_i^h + v'_i) = u_i^h v_i^h + u_i^h v_i^l + u'_i v_i^h + u'_i v_i^l$
- Use the mixed-precision FP16 dot-product-and-add

		u_0^h	u_0^h	u_0^{\prime}	u_0'	u_1^h	u_1^h	<i>u</i> [/] ₁	<i>u</i> [/] ₁	u_2^h	u_2^h	u_2^{\prime}	u_2^{\prime}	u_3^h	u_3^h	u_3'	u_3'
a	Ŧ	v_0^h	v_0'	v_0^h	v_0'	v_1^h	v_1'	v_1^h	v_1'	v_2^h	v_2'	v_2^h	v_2'	v_3^h	v_3'	v_3^h	v_3'

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of quasi-FP32 matrix operations.

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of quasi-FP32 matrix operations.

Quasi-FP32 is not FP32

- 1 range issues: FP16 exponent is more limited than FP32
- Precision issues: emulation of 1+21 mantissa bits, whereas FP32 is 1+23.
- Double BF16 instead solves range issues, but makes precision issues worse...
- Triple BF16 lowers performance to X/9 TFlop/s (and 9 is not a hardware-friendly factor)

Executive summary so far

... If we have P TFlop/s of FP16 tensor operator, we can use it to compute P/4 TFlop/s of quasi-FP32 matrix operations.

Quasi-FP32 is not FP32

- 1 range issues: FP16 exponent is more limited than FP32
- Precision issues: emulation of 1+21 mantissa bits, whereas FP32 is 1+23.

Double BF16 instead solves range issues, but makes precision issues worse... Triple BF16 lowers performance to X/9 TFlop/s (and 9 is not a hardware-friendly factor)

This paper:

- Proposition of **minimal hardware support** solving both problems
- (with decomposition of x into $x^h + x^l$ in hardware)
- evaluation of its overhead.

The proposed architecture

Proposed minimum intermediate format: E9S12

- Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
- What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ? First idea: E8M11 (12-bit significand with the implicit 1).

Proposed minimum intermediate format: E9S12

- Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
- What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ? First idea: E8M11 (12-bit significand with the implicit 1).

Why S12 and not M11?

Because E8M11 tends to imply a normalized format with an implicit 1. Not mandatory here! When decomposing a FP32 $x = x^h + x^l$, why round x^h to the nearest? Why normalize x^l ? Just splitting the bit vector is cheaper. In short, S12 stands for a 12-bit significand, possibly un-normalized.

Proposed minimum intermediate format: E9S12

- Assumption: We know how to build an exact or accurate sum-of-ExMy-plus-FP32.
- What is the smallest format ExMy accomodating FP16, or BF16, or half-FP32 ? First idea: E8M11 (12-bit significand with the implicit 1).

Why S12 and not M11?

Because E8M11 tends to imply a normalized format with an implicit 1. Not mandatory here! When decomposing a FP32 $x = x^h + x^l$, why round x^h to the nearest? Why normalize x^l ? Just splitting the bit vector is cheaper. In short, S12 stands for a 12-bit significand, possibly un-normalized.

Why E9 and not E8?

The decomposition of an FP32 with a very small exponent entails an even smaller exponent for x^{\prime} : we need one more exponent bit to capture this case. This will be cheap.

In details

E9S12 consists of

- a sign bit
- 5 flag bits (isNormal, isInf, isNaN, isSigNaN, isZero)
- 9 exponent bits, with a fancy bias of 139=127+12
- 12 significand bits, not necessarily normalized

Conversion in two steps:

- unpack the floating-point format
 - extract exponent and fraction fields,
 - decode all the flags
 - prepend implicit bit to significand
- convert to E9S12
 - zero-pad significand
 - adjust exponent bias

In more details, it is just simple

Conversion in two steps:

- unpack the floating-point format
 - extract exponent and fraction fields,
 - decode all the flags
 - prepend implicit bit to significand
- convert to E9S12
 - adjust exponent bias
 - zero-pad significand

Unpacking FP32 into a double-E9S12

Overall multiplexing of each group of 4 inputs

Overall multiplexing of each group of 4 inputs

The sum of product itself

The sum of product itself

The sum of product itself (variant that registers the large accumulator)

Choices of parameters

- Correctly rounded FP16 dot product of size N requires $L = 81 + \log_2(N)$ bits.
- We round it up to L = 81 + 16

so we can iterate on the operator for N up to 65000.

This is much more accurate than the competition...

Executive summary

With this architecture:

- Single correct rounding of the exact FP16 dot product with FP32 add
- Full subnormal support (easy since E9M12 is not necessarily normalized)
 - NVIDIA flushes TF32 subnormals to zero
- Results accurate to 81+16-bit for the other dot-products-and-add variants

There is a cheaper variant where we loop back an FP32

- Support of FP32 FMA (Fused Multiply and Add)
- But less accurate when using the operator iteratively

Evaluation

A trade-off between area and power

Combinatorial operators running a 333MHz to emulate pipeline at 1GHz

Operator	Area	Power (mW)			
	(µm²)	Leakage	Total		
Baseline: DP16 _{FP16} A _{FP32}	1796	.000477	1.83		
DP16 _{FP16/BF16} A _{FP32}	2343	.000602	2.11		
DP4 _{FP32} A _{FP32}	1865	.000476	1.87		
DP4 _{FP32} A _{FP32} + DP16 _{FP16/BF16} A _{FP32}	4208	.001078	2.11		
proposed	2504	.000657	2.62		

- FP32 support adds 40% area to a DP16_{FP16}A_{FP32}
- Compared to two separate accelerators, the combined operator
 - saves 68% of area
 - saves power when idle (leakage)
 - but consumes more power when active: 25% for 16-bit vectors, or 43% for FP32.

Questions ?