
Fast basecases for arbitrary-size multiplication

Albin Ahlbäck1 Fredrik Johansson2

1LIX, CNRS, École polytechnique

2Inria Bordeaux

5 May 2025

Albin Ahlbäck has been supported by an ERC-2023-ADG grant for the ODELIX project.
Fredrik Johansson has been supported by the French ANR-20-CE-48-0014 NuSCAP.



Fast multiple-precision arithmetic – why?

Multiple-precision arithmetic is arithmetic with precision exceeding the natural register
width.

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3, 4])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

Multiple-precision arithmetic is arithmetic with precision exceeding the natural register
width.

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3, 4])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

Multiple-precision arithmetic is arithmetic with precision exceeding the natural register
width.

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3, 4])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

Multiple-precision arithmetic is arithmetic with precision exceeding the natural register
width.

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3, 4])

A common multiple-precision library to use is GMP, which is also very fast.



Fast multiple-precision arithmetic – why?

Multiple-precision arithmetic is arithmetic with precision exceeding the natural register
width.

We care about fast multiple-precision arithmetic. Why?

Examples include:

Correctly rounded floating point arithmetic without the use of lookup tables (e.g.
MPFR [1])
Verifying the Riemann hypothesis up to very big numbers [2]
Certified homotopy continuation (ex. [3, 4])

A common multiple-precision library to use is GMP, which is also very fast.



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end

With these we can generate division, greatest common divisor, Toom-Cook
multiplication, fast polynomial multiplication, ...



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end

With these we can generate division, greatest common divisor, Toom-Cook
multiplication, fast polynomial multiplication, ...



Basics of Multiple-Precision Arithmetic

Fundamentals are these schoolbook O(n) operations:

Left and right shift: r ←⌊a ·2e⌋
Addition and subtraction: r ← a±b
m×1-multiplication: r ← a ·b0 (mul_1)
Addition of m×1-multiplication: r ← r +a ·b0 (addmul_1)

Schoolbook m×n -multiplication is then
r ← a ·b0 // mul_1
for i ← 1 to n−1 do

r ← r + (a ·bi) ·βi // addmul_1
end

With these we can generate division, greatest common divisor, Toom-Cook
multiplication, fast polynomial multiplication, ...



Apple M1 Pipeline (Simplified)

L1-I Decode

Map and rename

Queue Queue Queue

Sched. Sched. Sched. Sched. Sched. Sched. Scheduler

ALU
FLAGS

ALU
FLAGS

ALU
FLAGS

ALU ALU
MUL

ALU
MUL STORE

LOAD
STORE

LOAD LOAD

8 ops/cycle

8 ops/cycle

8 ops/cycle 8 ops/cycle

4 ops/cycle

Research done by Dougall Johnson [5].



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x1 ← x0+a0,
x2 ← x1+a1,
x3 ← x2+a2.

The result x3 depends on x2
which depends on x1. This is
called a dependency chain.



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x1 ← x0+a0,
x2 ← x1+a1,
x3 ← x2+a2.

The result x3 depends on x2
which depends on x1. This is
called a dependency chain.



CPU Pipeline

Simple version:

1 Read some instructions from memory
2 Schedule the instructions to the correct unit
3 Units executes instructions

This scheme allows for:

Concurrent execution of multiple instructions
Out-of-order execution

But one has to be aware of dependency chains.

Example: (Dependency chain)
Consider the algorithm

x1 ← x0+a0,
x2 ← x1+a1,
x3 ← x2+a2.

The result x3 depends on x2
which depends on x1. This is
called a dependency chain.



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2)
MUL (2)
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2)
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3)

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3) 4

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)



Lower bound of GMP’s addmul_1

L(top): ldp u0, u1, [up], #16
ldp u2, u3, [up], #16
ldp r0, r1, [rp]
ldp r2, r3, [rp,#16]
mul x0, u0, v0
umulh u0, u0, v0
mul x1, u1, v0
umulh u1, u1, v0
mul x2, u2, v0
umulh u2, u2, v0
mul x3, u3, v0
umulh u3, u3, v0

Unit type (amount) Cycles / 4 words
LOAD/STORE (3/2) 2
MUL (2) 4
ALU+FLAGS (3) �4 5

adds x0, r0, x0
adcs u0, r1, u0
adcs u1, r2, u1
adcs u2, r3, u2
adc u3, u3, zero
adds x0, x0, CY
adcs u0, u0, x1
adcs u1, u1, x2
adcs u2, u2, x3
adc CY, u3, zero
stp x0, u0, [rp], #16
stp u1, u2, [rp], #16
sub n, n, #1
cbnz n, L(top)

5 cycles per 4 words?
Benchmarks says yes!



What can be improved?

GMP’s addmul_1 will do k +1
k cycles per word asymptotically on Apple M1, where k is

the number of unrolls.

To improve this, we fully unroll one size parameter in the full multiplication:

Reduces overhead,
Avoids breaking carry chains, hopefully lets

k +1
k cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



What can be improved?

GMP’s addmul_1 will do k +1
k cycles per word asymptotically on Apple M1, where k is

the number of unrolls.

To improve this, we fully unroll one size parameter in the full multiplication:

Reduces overhead,
Avoids breaking carry chains, hopefully lets

k +1
k cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



What can be improved?

GMP’s addmul_1 will do k +1
k cycles per word asymptotically on Apple M1, where k is

the number of unrolls.

To improve this, we fully unroll one size parameter in the full multiplication:

Reduces overhead,
Avoids breaking carry chains, hopefully lets

k +1
k cycles per word −→ 1 cycle per word

asymptotically.

On x86 CPUs (Intel and AMD), we completely unroll both size parameters.



High multiplication

High multiplication is multiplication where we scrap the lower part of the result.
Important use cases include floating point arithmetic and modular arithmetic.

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Full multiplication,
2n words

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Sloppy approximate,
∼n words

b0
b1
b2
b3
b4

a0 a1 a2 a3 a4

Precise approximate,
∼n+1 words

– scrapped
– high multiplication between two words u and v : ⌊uv/β⌋
– full multiplication



Results, full multiplication (throughput)

1 3 5 7 9 11 13 15
0

100

200

300

400

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication (throughput)

1 2 3 4 5
0

20

40

60

Number of words, n

Cl
oc

k
cy

cle
s

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



Results, full multiplication (throughput)

1 3 5 7 9 11 13 15
1
2
3
4
5
6
7
8
9

Number of words, n

Cl
oc

k
cy

cle
s/

n2

GMP, x86 (Zen 3)
FLINT, x86 (Zen 3)

GMP, ARM (Apple M1)
FLINT, ARM (Apple M1)



107 multiplications with lengths m,n ∈ {1,2, . . . ,N}, uniformly random

GMP (mpn_mul) Ours (flint_mpn_mul)
N Time C J I Time C J I

Random, x86-64 (Zen 3)
8 0.32 s 18.3% 22.3% 0% 0.18 s 20.9% 48.4% 0.00%

16 0.55 s 10.0% 18.2% 0% 0.43 s 14.3% 33.1% 3.05%
32 1.39 s 10.5% 12.7% 0% 1.32 s 10.7% 16.7% 0.41%
64 4.48 s 11.5% 11.6% 0% 4.29 s 12.9% 14.3% 0.12%

Random, ARM64 (M1)
8 0.30 s 11.4% 0.00% 0.00% 0.23 s 11.2% 41.7% 0.01%

16 0.50 s 10.9% 0.00% 0.00% 0.43 s 10.5% 41.6% 0.00%
32 1.31 s 9.6% 0.00% 0.00% 1.13 s 10.0% 13.9% 0.00%
64 4.16 s 8.3% 0.20% 0.02% 3.82 s 9.8% 4.2% 0.06%

Table: Conditional branch misprediction rates “C”, indirect jump address misprediction rates “J”
and instruction cache miss rates “I”.



Results, high multiplication on Zen 3 (throughput)

0 5 10 15 20
0

100

200

300

400

Number of words, n

Cl
oc

k
cy

cle
s

MPFR
FLINT



Results, high multiplication on Zen 3 (throughput)

2 4 6 8
0

20

40

60

80

100

120

Number of words, n

Cl
oc

k
cy

cle
s

MPFR
FLINT



Results, high multiplication on Zen 3 (throughput)

1 2 3 4 5 6 7 8 9
1

3

5

7

9

11

13

15

Number of words, n

Cl
oc

k
cy

cle
s/ (n

+1
)n

2

MPFR
FLINT



Multiply two 100×100 FP matrices using dot products (Zen 3)

0 100 200 300 400 500
0

10

20

30

40

50

Bits

Ti
m

e
(m

s)

ARF (GMP)
ARF (new)
NFLOAT

QD



Conclusions and thoughts

Critical functions require hardware awareness – in our case, ISA
Straight line programs can be important to reduce overhead when going from
native data types to multiple precision arithmetic
Poor compiler support for multiple precision arithmetic – handwritten assembly
remain critical



Conclusions and thoughts

Critical functions require hardware awareness – in our case, ISA
Straight line programs can be important to reduce overhead when going from
native data types to multiple precision arithmetic
Poor compiler support for multiple precision arithmetic – handwritten assembly
remain critical



Conclusions and thoughts

Critical functions require hardware awareness – in our case, ISA
Straight line programs can be important to reduce overhead when going from
native data types to multiple precision arithmetic
Poor compiler support for multiple precision arithmetic – handwritten assembly
remain critical



Bibliography

[1] Laurent Fousse et al. “MPFR: A multiple-precision binary floating-point library with correct
rounding”. In: ACM Trans. Math. Softw. 33.2 (June 2007), 13–es. ISSNISSNISSN: 0098-3500. DOIDOIDOI:
10.1145/1236463.1236468.

[2] Dave Platt and Tim Trudgian. “The Riemann hypothesis is true up to 3 ·1012”. In: Bulletin of the
London Mathematical Society 53.3 (Jan. 2021), pp. 792–797. ISSNISSNISSN: 1469-2120. DOIDOIDOI:
10.1112/blms.12460.

[3] Joris van der Hoeven. Reliable homotopy continuation. Research Report. LIX, Ecole polytechnique,
Jan. 2015. URLURLURL: https://hal.science/hal-00589948.

[4] Alexandre Guillemot and Pierre Lairez. “Validated Numerics for Algebraic Path Tracking”. In:
Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation. ISSAC
’24. ACM, July 2024, pp. 36–45. DOIDOIDOI: 10.1145/3666000.3669673.

[5] Dougall Johnson. Firestorm Overview. 2023. URLURLURL:
https://dougallj.github.io/applecpu/firestorm.html (visited on 02/28/2025).

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1112/blms.12460
https://hal.science/hal-00589948
https://doi.org/10.1145/3666000.3669673
https://dougallj.github.io/applecpu/firestorm.html

	Title page
	Fast Multiple-Precision Arithmetic – Why?
	Basics of Multiple-Precision Arithmetic
	Apple M1 Pipeline (Simplified)
	Lower bound of GMP's addmul_1
	What can be improved?
	High multiplication
	Results
	Conclusions
	Bibliography
	References

