
Trailing-Ones Anticipation for Reducing the Latency
of the Rounding Incrementer in FP FMA Units

Toru Koizumi∗†, Ryota Shioya∗‡, Takuya Yamauchi∗, Tomoya Adachi∗,
Ken Namura∗, and Jun Makino∗

∗ Preferred Networks, Inc.
† Nagoya Institute of Technology

‡ The University of Tokyo

2/22Introduction

• Floating-point fused multiply-add (FMA) operations are fundamental
in many fields

• such as graphics, scientific computing, machine learning.

• One of the most complex arithmetic units in a processor

• Many research efforts have been made to design an efficient FMA.

• Some recent improvements:

• Leading zeros anticipation that can also handle a denormal number output [Lutz, 2017]

• Early decision of rounding direction [Lutz, 2017]

• Booth multiplier that can also handle denormal number inputs [Sohn, 2023]

• Tracking an all-ones bit in addition to the sticky bit to remove the dual adder [Sohn, 2023]

3/22Conventional FMA architecture

• Conventional FMA architecture:
five Θ log 𝑁 -depth components

(1) Partial product generator and align shifter

(2) Wallace (or another adder) tree

(3) Parallel prefix (dual) adder
and leading zeros anticipator

(4) Normalize shifter

(5) Rounding incrementer

• We focused on (5) for the possibility
of reducing latency.

~60% of

total latency

[1]

[1] S. Srinivasan, K. Bhudiya, R. Ramanarayanan, P. S. Babu, T. Jacob, S. K. Mathew, R. Krishnamurthy, and V. Errgauntla, “Split-path fused

floating point multiply accumulate (FPMAC),” in 2013 IEEE 21st Symposium on Computer Arithmetic (ARITH), pp. 17–24 (2013).

(5)

4/22Idea: using trailing ones

• If we have the trailing ones of before-rounding mantissa,
the increment is done by a simple XOR operation.
• Example: 0b110011 [M: before-rounding mantissa]

Example: 0b000011 [T: trailing ones]
Example: 0b000111 [T << 1 | 1]
Example: 0b110100 [M ^ (T << 1 | 1)] this is the M+1

• The trailing ones indicate the carry-propagation region.

• How can we obtain the trailing ones of before-rounding mantissa?

 → Our solution: trailing-ones anticipation

5/22Table of contents

• Introduction ― conventional FMA architecture and our idea

• Proposed architecture

• Trailing-ones anticipation

• Overview

• Detailed architecture

• Half adder array

• Special parallel prefix network

• Bitonic sort-based shifter

• Error correction and negative case handling

• Evaluation

6/22Proposed architecture

• A trailing-ones anticipator (TOA) is placed in parallel with (3) and (4).

Conventional architecture Proposed architecture

(5)

7/22Proposed architecture

• A trailing-ones anticipator (TOA) is placed in parallel with (3) and (4).

• The TOA circuit outputs
the trailing ones of the before-
rounding (= after-normalized)
mantissa using the output of
the Wallace tree.

Proposed architecture

8/22Trailing-ones anticipator: Overview

• The TOA circuit is built on a simple idea:
• First, calculate 𝑎 + 𝑏 and 𝑎 + 𝑏 + 2𝐾 for an appropriate 𝐾.

• 2𝐾 is the last place of before-rounding mantissa.

• XOR them, then normalize.

• The problem: How to obtain 𝐾 or 2𝐾?
• Explicitly obtaining the value of 𝐾 or 2𝐾 takes

Θ log 𝑁 time*; thus, such an architecture
will not reduce the total latency.

→ Our solution: use an estimate value 𝐸 and a special adder
• Our special adder calculate 𝑎 + 𝑏 + MSO(𝐸).

• MSO(𝑥) denotes a binary number where all bits except the most significant 1 of 𝑥 are set to 0.
Example: MSO(0b000010011) = 0b000010000

• 𝐸 needs satisfy MSO 𝐸 = 2𝐾 𝑜𝑟 2𝐾+1 and can be obtained in 𝑂 1 time.

* Since changing any bit in 𝑎 or 𝑏 may change the value of 𝐾, it needs Θ log 𝑁 -depth circuit.

Note: Although the dual adder can calculate 𝑎 + 𝑏 + 1 but it cannot calculate 𝑎 + 𝑏 + 2𝐾 for arbitrary 𝐾.

9/22Trailing-ones anticipator: Detailed architecture

• Five main components in our architecture:
(1) LZA estimate generator

• The same as in the conventional design

• Just feed its output into (3) and (4).

(2) Half-adder array
• Constrains the inputs for (3).

(3) Special parallel prefix network
• The most novel part in this architecture

(4) Lower-than-MSO(E) mask generator
• Almost the same as Lutz’s mask

(5) Bitonic sort-based shifter
• Normalize shifting can be done by a sorter!

• The bitonic sorter is faster and smaller than a shifter.

(3) Special parallel

prefix network

(2) Half adder array
(1) LZA estimate

generator

(4) Lower-than-

MSO(E) mask

generator

E

a b

a’ b’

G ሷG

SEL

OR4

Bitonic

Sorter

Anticipated trailing ones

M

(5)

10/22(1) Estimating 2𝐾

• An LZA estimate 𝐿 can be obtained in 𝑂 1 time.

• It satisfies 2𝑁+𝐾 ≤ 𝐿 < 2𝑁+𝐾+2.

• Thus, we can use 𝐸 = 𝐿 ≫ 𝑁.

• It can be obtained in 𝑂 1 time.

• It satisfies 2𝐾 ≤ E < 2𝐾+2.

• This means that MSO 𝐸 is either 2𝐾 or 2𝐾+1.

• An LZA error correction is needed; explained later.

11/22(2) Half-adder array

• We want to calculate 𝑎 + 𝑏 + MSO(𝐸).

• Parallel prefix adders cannot handle this directly

• because two carries can be generated in the same digit.

• To address this issue, a half-adder array is employed.

• A half-adder array convert 𝑎 and 𝑏 to 𝑎′ and 𝑏′ where 𝑎 + 𝑏 = 𝑎′ + 𝑏′ satisfies.

• For any 𝑖, σ𝑘=0
𝑖 2𝑘 𝑎′𝑘 + 𝑏′𝑘 < 3 ⋅ 2𝑖 (cf. σ𝑘=0

𝑖 2𝑘 𝑎𝑘 + 𝑏𝑘 < 4 ⋅ 2𝑖) holds.

• It also holds that σ𝑘=0
𝑖 2𝑘 𝑎′𝑘 + 𝑏′𝑘 + MSO 𝐸 𝑘 < 4 ⋅ 2𝑖.

• This guarantees the carry from any digit will be at most 1 (and will not be 2).

→ We can use a parallel prefix adder.

12/22(3) Special parallel prefix adder (1/2)

• The special parallel prefix adder
calculates 𝑎 + 𝑏 + MSO 𝐸
from 𝑎, 𝑏, and 𝐸 (not MSO 𝐸).

→ We introduce a special prefix box.

• Conventional signals: Gi:j and Pi:j
• The generate and propagate signals

• Novel signals: ሷGi:j and ሷPi:j

• It means that, if MSO(E) is in between i and j, generates carry (ሷGi:j)
or propagates carry (ሷPi:j).

13/22(3) Special parallel prefix adder (2/2)

• Calculation method of novel signals:

• ሷGi:j = ሷGi:k ∨ Pi:k ∧ ሷGk:j ∨ ሷPi:k ∧ Gk:j

• ሷPi:j = Pi:k ∧ ሷPk:j ∨ ሷPi:k ∧ Pk:j

• These equations are derived by
adding exactly one umlaut to each
term and summing up them.

• Pi:k ∧ Pk:j → Pi:k ∧ ሷPk:j and ሷPi:k ∧ Pk:j

• Gi:k ∨ Pi:k ∧ Gk:j → ሷGi:k, Pi:k ∧ ሷGk:j, and ሷPi:k ∧ Gk:j

• “Exactly one umlaut” comes from the fact that MSO(E) has exactly one 1 bit.

• The only 1 cannot simultaneously exist both between i and k and between k and j.

14/22(4) Lower-than-MSO(E) mask generator

• The propagate/generate signals are
• P/G if the position is lower than MSO(E)

• ሷP/ ሷG otherwise

• Lower-than-MSO(E) mask 𝑀 is used to select from P/G or ሷP/ ሷG.
• Example: 0b0001010010 [E]

• Example: 0b0000111111 [M]

• The following algorithm can calculate 𝑀.
M = E >> 1;
for shamt in { 1, 2, 4, 8, 16, ... }:

M |= M >> shamt;

15/22(5) Bitonic sort-based shifter (1/2)

• The output of the special prefix adder is a bitonic sequence.

• Bitonic sequence: 0*1*0* (or 1*0*1*)

• Trailing ones start at the right end by their nature.

• Trailing ones: 0*1*

→ Sorting instead of shifting can be used.

• A bitonic sorter is faster than a shifter because
it does not have large fan-out structures.

16/22(5) Bitonic sort-based shifter (2/2)

• The width of the sorting circuit can be reduced.

• The special parallel prefix adder outputs 4𝑁 + Θ 1 bits but only an 𝑁 + 1
bits bitonic sorter is needed if OR4 preprocessor is placed before the sorter.

• OR4 preprocessor leverages the fact that

• trailing-ones cannot contain more than 𝑁 + 1 1 bits, and

• a bitonic sorter can sort 1*0*1* sequences as well as 0*1*0* sequences.

000000001111 111000000000 000000000000000000000000

111000001111 𝑁 + 1 bits block

The special parallel

prefix adder output

OR4 preprocessor output

To bitonic sorter

17/22Error correction

• The obtained trailing ones may have one bit position error.

• Classifying in three cases can deal this error.

(1) The before-rounding mantissa is an even number

• Simply invert last bit. Trailing ones are not used.

(2) The before-rounding mantissa is an odd number and LZA is correct

• Simply XOR the mantissa and the trailing ones.

(3) The before-rounding mantissa is an odd number and LZA mispredicts

• XOR the mantissa and one-bit shifted trailing ones, then invert last bit.

000001100110 000001100111→

000001100111 000001101000→
000000001111

mantissa

mantissa

trail. ones

000001100111 000001101000→
000000000111

mantissa

trail. ones

18/22Negative case handling

• Positive case: 𝑎 + 𝑏 + 2𝐾 is needed.

• Negative case: −𝑎 − 𝑏 + 2𝐾 is needed.

• We have been unable to find a circuit configuration that can
simultaneously compute both patterns.

→ Simply prepare both circuits

19/22Table of contents

• Introduction ― conventional FMA architecture and our idea

• Proposed architecture

• Trailing-ones anticipation

• Overview

• Detailed architecture

• Half adder array

• Special parallel prefix network

• Bitonic sort-based shifter

• Error correction and negative case handling

• Evaluation

20/22Evaluation methodology

• We implemented the following three FMA circuits in SystemVerilog.

• Sohn’s FMA [2]

• It seems to be oriented towards saving circuit area.

• Sohn’s FMA with Lutz’s technique [3] and Radix-4 Booth multiplier

• Festest known implementation.

• Our FMA (with Lutz’s technique and Radix-4 Booth multiplier)

• We synthesized the design by Synopsys Design Compiler with a
standard cell library derived from the ASAP7 7nm finFET PDK.

[2] J. Sohn, D.K. Dean, E. Quintana, and W.S. Wong, “Enhanced floating point multiply-add with full denormal support,” in 2023 IEEE 30th

Symposium on Computer Arithmetic (ARITH), 2023, pp. 143–150.

[3] D.R. Lutz, “Optimized leading zero anticipators for faster fused multiply-adds,” in 2017 51st Asilomar Conference on Signals, Systems, and

Computers, 2017, pp. 741–744.

21/22Evaluation results ― latency and area

• Our design improved the total latency by ~30 ps (4%).

• The area increased by 26% (when using Brent-Kung or Sklansky
structure for proposed special adder).

• Using Kogge-Stone structure for
proposed special adder did not
yield additional speed-up and
only resulted in an unnecessarily
large area.

-30ps

+365μm²

Better

22/22Conclusion

• We proposed a novel FMA architecture using trailing-ones anticipation.

• The rounding incrementor can be replaced by a simple XOR operation; thus,
the total latency is reduced.

• The key is a special parallel prefix adder using ሷGi:j and ሷPi:j.

• It can calculate 𝑎 + 𝑏 + 2𝐾 without explicitly computing 𝐾 or 2𝐾.

• The evaluation results show it contributes reducing the latency by 4%.

• However, the area is increased by 26%.

• Future work: negative case handling in a single circuit

23/22

Sohn’s FMA [2] Sohn’s

+ Radix-4 + Lutz’s mask

Proposed FMA

Exponent Difference

 & Alignment

Exponent adder (30), Alignment shifter (120)

Complement (25), Sticky (10)

Exponent adder (30), Alignment shifter (120)

Complement (25), Sticky (10)

Exponent adder (30), Alignment shifter (120)

Complement (25), Sticky (10)

Multiplier Hard multiplier (145)

Booth selector (540), Denormal adjust (5)

Wallace tree (300)

Booth selector (380), Denormal adjust (5)

Wallace tree (455)

Booth selector (370), Denormal adjust (5)

Wallace tree (430)

Main Adder PPA (150), Complement (25) PPA (120), Complement (30) PPA (115), Complement (30)

Special PPA (410)

LZA LZA input generation (100), LZC (40) LZA input generation (100), LZC (40)

Lutz’s mask generation (55)

LZA input generation (100), LZC (40)

Lutz’s mask generation (55)

Normalization Normalize shifter (100), Exponent adder (5)

Sticky/All ones (10)

Normalize shifter (100), Exponent adder (5)

Sticky/All ones (10), Lutz’s mask tree (90)

Normalize shifter (85), Exponent adder (5)

Sticky/All ones (10), Lutz’s mask tree (85)

Bitonic sorter-based shifter (25)

Rounding Adjust shifter (10), Round decision (5)

Incrementer (25)

Result selector (20)

Adjust shifter (10), Round decision (5)

Incrementer (25)

Result selector (20)

Adjust shifter (15), Round decision (5)

XOR (10)

Result selector (20)

Other Special case handler (25)

Exception flags (5)

Special case handler (25)

Exception flags (5)

Special case handler (25)

Exception flags (5)

Total 1695 1665 2030

Area breakdown

24/22

Sohn’s FMA [2] Sohn’s

+ Radix-4 + Lutz’s mask

Proposed FMA

Exponent Difference

 & Alignment

Exponent adder (95)

Alignment shifter (135)

Complement (15)

Exponent adder (85)

Alignment shifter (135)

Complement (15)

Exponent adder (95)

Alignment shifter (140)

Complement (15)

Multiplier (rest of) Wallace tree (155) (rest of) Wallace tree (80) (rest of) Wallace tree (100)

Main Adder PPA (120)

Complement (55)

LZA LZA input generation (40)

LZC (75)

LZA input generation (70)

LZC (70)

Normalization Normalize shifter (115) Normalize shifter (95) Normalize shifter (155)

Rounding Adjust shifter (40)

Incrementer (95)

Result selector (10)

Adjust shifter (20)

Incrementer (95)

Result selector (10)

Adjust shifter (20)

XOR (10)

Result selector (10)

Other Flip-flop setup (40) Flip-flop setup (40) Flip-flop setup (35)

Total 810 750 720 (fastest)

Latency breakdown

	スライド 1: Trailing-Ones Anticipation for Reducing the Latency of the Rounding Incrementer in FP FMA Units
	スライド 2: Introduction
	スライド 3: Conventional FMA architecture
	スライド 4: Idea: using trailing ones
	スライド 5: Table of contents
	スライド 6: Proposed architecture
	スライド 7: Proposed architecture
	スライド 8: Trailing-ones anticipator: Overview
	スライド 9: Trailing-ones anticipator: Detailed architecture
	スライド 10: (1) Estimating 2 じょう 大文字 K
	スライド 11: (2) Half-adder array
	スライド 12: (3) Special parallel prefix adder (1/2)
	スライド 13: (3) Special parallel prefix adder (2/2)
	スライド 14: (4) Lower-than-MSO(E) mask generator
	スライド 15: (5) Bitonic sort-based shifter (1/2)
	スライド 16: (5) Bitonic sort-based shifter (2/2)
	スライド 17: Error correction
	スライド 18: Negative case handling
	スライド 19: Table of contents
	スライド 20: Evaluation methodology
	スライド 21: Evaluation results ― latency and area
	スライド 22: Conclusion
	スライド 23: Area breakdown
	スライド 24: Latency breakdown

