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Strong need to optimize AI and CNN computations

Many applications:

▶ Medical Imaging

▶ Audio Processing

▶ Object Detection

▶ Synthetic Data Generation

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications
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Strong need to optimize AI and CNN computations

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

FP32 multiplications are costly, in
particular for hardware implementation
→ We target FPGA

A possible solution: Reducing precision through quantization
→ single precision (FP32) to smaller formats (FP16, INT8, INT4, etc.)
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What is quantization?

Scaling and rounding to get quantized weights:

WFxP = ⌈S ×WFP⌋

Let b be the target precision and [α, β] the range of WFP

The scaling factor S is a parameter:

S =
β − α

2b − 1

To simplify it, we perform symmetric quantization

S =
max (|α| , |β|)

2b − 1

S is a floating-point value! This is expensive.
We use a power of two scaling factor instead:

S =
2⌈log2(max(|α|,|β|))⌉

2b
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What is quantization?

Moreover, some quantization approaches apply a function on WFP:

WFxP = ⌈S × f (WFP)⌋

where

f (x) = tanh(x) for DoReFa-Net [ZWN+16]

or

f (x) = sign(x)× log(|x |) for LogQuant [GAGN15]

Two main families of methods:

▶ PTQ: Post-Training Quantization, i. e., FP32 training, then quantize

▶ QAT: Quantization-Aware Training, i. e., update quantized signals
during training
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What is Quantization-Aware Training?

Schematic view of a QAT procedure with STE applied (adapted
from [GKD+21])
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How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].
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After we quantize: the implementation

67AB9F 67AB9F 67AB9F 67AB9F
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After we quantize: the implementation

67AB9F 67AB9F 67AB9F 67AB9F

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost
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After we quantize: the implementation

Generic multiplication
during training
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After we quantize: the implementation

Constant multiplication
for hardware implementation
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Hardware implementation: the MCM problem

Multiplying a variable with multiple constants, the so-called
Multiple Constant Multiplication (MCM) problem

Example of an adder graph to compute {40, 5, 58, 22, 8} × x :

→ 5 generic multiplications vs 3 adders

There is an ILP model to obtain minimal cost adder graphs [GV23]
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Hardware implementation: using adder graphs

Shift-and-add implementations:

→ Constant multiplication cost depends on the constant

First idea: during training, at the quantization step, prefer constants
with smaller adder graph cost, e. g., only power of 2 [ECS+21]
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Progressive Adder-Aware Training

Our idea: Do not limit weight possibilities but
progressively fix weights during training instead

Key elements:

▶ Every N training steps, fix some weights

▶ Fixed weights are chosen from their implementation cost
→ power of two will be fixed first

▶ Implementation cost takes into account previously fixed weights
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Progressive Adder-Aware Training: Computing Scores

67AB9F 67AB9F 67AB9F 67AB9F 67AB9F

SCM Score:

{1, 1, 2, 2, 0}

Suppose that 5 has been
fixed previously:

{0,−, 2, 1, 0}

For basic score, we can use a standard SCM approach
→ for example, an ILP model [GV23]
To consider fixed weights, we need to solve a new problem
→ we extend the SCM model
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Progressive Adder-Aware Training: SCM inspired model

The key of the model is “adders” modeling:

2saca︸︷︷︸
cnsha

= (−1)σa,l 2sa,l ca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r ca,r︸︷︷︸
csha,r︸ ︷︷ ︸

csh,sga,r

▶ c1,l,0 = 1 and c1,r ,0 = 1;

▶ c2,l,0 = 0 and c2,r ,0 = 1 and
c2,l,1 = 1 and c2,r ,1 = 0;

▶ c1,l = 1 and c1,r = 1 and
c2,l = 5 and c2,r = 1;

▶ s1,l = 2 and s1 = 0 and
s2,l = 1 and s2 = 0;

▶ σ1,l = 0 and σ1,r = 0 and
σ2,l = 0 and σ2,r = 0;
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Progressive Adder-Aware Training: SCM-inspired model

To consider fixed weights F, we define ca for all a ∈ [[− |F| ,N]]

Then we fix “starting” ca’s:

ca = F−a ∀a ∈ [[− |F| ,−1]]

We can compute a score taking into account fixed weights
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Comparing hardware implementations

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost

▶ Processing Elements (PE) can
be changed as needed

▶ HLS code generation: easily
interchangeable components
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Comparing hardware implementations

CNN Method LUT (%) FF (%) DSP (%)

ResNet-20
Generic Mult. 15.17 1.90 0
DSPs 3.91 0.90 68.06
Adder graph 8.49 1.54 0

ResNet-18
Generic Mult. 64.94 9.44 0
DSPs − − 308†

Adder graph 41.82 7.05 0

VDSR-10
Generic Mult. > 100% − −

VDSR-10 DSPs − − 616†

Adder graph 97.87 14.59 0

†indicates an estimation as place and route was not possible
Xilinx ZCU104 board

▶ Using only DSPs is not reasonable

▶ Using adder graphs leads to lower resource consumption than letting
the tool decide

→ Using adder graphs in CNNs looks interesting
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Adder-Aware Training vs Quantization-Aware Training

CNN Method LUT (%) FF (%)

ResNet-20
Classic QAT 8.49 1.54
Our AAT 6.19 1.20

ResNet-18
Classic QAT 41.82 7.05
Our AAT 23.46 4.23

VDSR-10
Classic QAT 97.87 14.59
Our AAT 81.54 12.15

▶ HW cost reduced by ∼25% for a layer of ResNet-20

▶ HW cost reduced by ∼40% for a layer of ResNet-18

▶ HW cost reduced by ∼16% for a layer of VDSR-10

→ Hypothesis: more parallelism to exploit in ResNet-18

Disclaimer: no HW comparison with SotA AAT approaches
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Adder-Aware Training vs Quantization-Aware Training

QAT PoT More AddNet
[HHW+23]
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ResNet-18
ResNet-20
VDSR-10

FP32 Ref: ResNet-18: 73.1%, ResNet-20: 92.8%, VDSR: 34.03dB

▶ AAT accuracy < QAT accuracy
→ the AAT problem is more constrained

▶ Progressive AAT accuracy > Precomputed sets AAT accuracy
→ not all weight values are allowed
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Conclusion and perspectives

▶ We propose a new Adder-Aware Training approach

→ Key idea: progressively fix weights
→ This approach relies on solving an optimization problem

▶ Multiple experiments to have accuracy and hardware results

→ More constraints on the problem leads to accuracy loss
→ A new flexible hardware accelerator
→ Using adder graphs for neural networks implementation is promising
→ Adder-Aware Training leads to significant hardware cost reduction

w. r. t. a vanilla QAT approach
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Conclusion and perspectives

Next steps:

▶ Accuracy and hardware comparison with existing AAT approaches

▶ Hardware comparison over a complete CNN

▶ Speeding up the score computation

▶ Applying Adder-Aware Training approaches to other models (LLMs?)

▶ Free weights according to their gradient

▶ Find a balance between adder graphs and DSPs
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Conclusion and perspectives

▶ We propose a new Adder-Aware Training approach
→ Key idea: progressively fix weights
→ This approach relies on solving an optimization problem

▶ Multiple experiments to have accuracy and hardware results
→ More constraints on the problem leads to accuracy loss
→ A new flexible hardware accelerator
→ Using adder graphs for neural networks implementation is promising
→ Adder-Aware Training leads to significant hardware cost reduction

w. r. t. a vanilla QAT approach

Thank you! Questions?
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Comparing hardware implementations

Comparing different PE implementations:

▶ Using adder graphs

▶ Using DSPs

▶ Letting the synthesis tool decide (using ∗ operator)

Context:

▶ ResNet-20, ResNet-18 and VDSR-10 networks

▶ CIFAR-10, ImageNet-1K and Set291/Set5 datasets

▶ 8-bit Quantization-Aware Training

▶ Training calls an MILP solver for scores: Gurobi through Pyomo

▶ Xilinx ZCU104 board

▶ Results for a single layer, including the systolic array cost
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Progressive Adder-Aware Training: Solving the ILP model

▶ Models are small

→ ∼30− 200 variables
→ ∼50− 250 constraints

▶ Solving times are negligible

→ < 1s

▶ ResNet-18 on ImageNet-1K: Training time ∼24h (∼21h + ∼3h)

→ The ILP model is not a bottleneck

Training on abacus 17 Grid5K (RTX 2080TI)
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