
Hardware-Aware Training for Multiplierless
Convolutional Neural Networks

Rémi Garcia, Léo Pradels, Silviu Filip, Olivier Sentieys

May, 5th 2025

Université de Rennes, IRISA, Inria

Strong need to optimize AI and CNN computations

Many applications:

▶ Medical Imaging

▶ Audio Processing

▶ Object Detection

▶ Synthetic Data Generation

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 2

Strong need to optimize AI and CNN computations

Many applications:

▶ Medical Imaging

▶ Audio Processing

▶ Object Detection

▶ Synthetic Data Generation

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 2

Strong need to optimize AI and CNN computations

Many applications:

▶ Medical Imaging

▶ Audio Processing

▶ Object Detection

▶ Synthetic Data Generation

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 2

Strong need to optimize AI and CNN computations

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

FP32 multiplications are costly, in
particular for hardware implementation
→ We target FPGA

A possible solution: Reducing precision through quantization
→ single precision (FP32) to smaller formats (FP16, INT8, INT4, etc.)

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 3

Strong need to optimize AI and CNN computations

▶ More and more trainable parameters

→ ResNet-18: >11M
→ ResNet-152: >60M
→ GPT-3: 175B!

... used in multiplications

FP32 multiplications are costly, in
particular for hardware implementation
→ We target FPGA

A possible solution: Reducing precision through quantization
→ single precision (FP32) to smaller formats (FP16, INT8, INT4, etc.)

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 3

What is quantization?

Scaling and rounding to get quantized weights:

WFxP = ⌈S ×WFP⌋

Let b be the target precision and [α, β] the range of WFP

The scaling factor S is a parameter:

S =
β − α

2b − 1

To simplify it, we perform symmetric quantization

S =
max (|α| , |β|)

2b − 1

S is a floating-point value! This is expensive.
We use a power of two scaling factor instead:

S =
2⌈log2(max(|α|,|β|))⌉

2b

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 4

What is quantization?

Scaling and rounding to get quantized weights:

WFxP = ⌈S ×WFP⌋

Let b be the target precision and [α, β] the range of WFP

The scaling factor S is a parameter:

S =
β − α

2b − 1

To simplify it, we perform symmetric quantization

S =
max (|α| , |β|)

2b − 1

S is a floating-point value! This is expensive.
We use a power of two scaling factor instead:

S =
2⌈log2(max(|α|,|β|))⌉

2b

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 4

What is quantization?

Moreover, some quantization approaches apply a function on WFP:

WFxP = ⌈S × f (WFP)⌋

where

f (x) = tanh(x) for DoReFa-Net [ZWN+16]

or

f (x) = sign(x)× log(|x |) for LogQuant [GAGN15]

Two main families of methods:

▶ PTQ: Post-Training Quantization, i. e., FP32 training, then quantize

▶ QAT: Quantization-Aware Training, i. e., update quantized signals
during training

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 5

What is Quantization-Aware Training?

Schematic view of a QAT procedure with STE applied (adapted
from [GKD+21])

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 6

What is Quantization-Aware Training?

Schematic view of a QAT procedure with STE applied (adapted
from [GKD+21])

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 6

How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 7

How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 7

How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 7

How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 7

How does quantization impact accuracy?

Quantization: a trade-off

→ PTQ: smaller quantization
leads to worse accuracy

→ QAT: better accuracy

Our goal: taking the implementation cost into account during training

We are not the first to consider hardware implementation cost during the
training step [ECS+21, HKKV22, HHW+23].

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 7

After we quantize: the implementation

67AB9F 67AB9F 67AB9F 67AB9F

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

67AB9F 67AB9F 67AB9F

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

67AB9F 67AB9F 67AB9F

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

67AB9F 67AB9F 67AB9F 67AB9F

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

Generic multiplication
during training

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

After we quantize: the implementation

Constant multiplication
for hardware implementation

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 8

Hardware implementation: the MCM problem

Multiplying a variable with multiple constants, the so-called
Multiple Constant Multiplication (MCM) problem

Example of an adder graph to compute {40, 5, 58, 22, 8} × x :

→ 5 generic multiplications vs 3 adders

There is an ILP model to obtain minimal cost adder graphs [GV23]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 9

Hardware implementation: the MCM problem

Multiplying a variable with multiple constants, the so-called
Multiple Constant Multiplication (MCM) problem

Example of an adder graph to compute {40, 5, 58, 22, 8} × x :

→ 5 generic multiplications vs 3 adders

There is an ILP model to obtain minimal cost adder graphs [GV23]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 9

Hardware implementation: the MCM problem

Multiplying a variable with multiple constants, the so-called
Multiple Constant Multiplication (MCM) problem

Example of an adder graph to compute {40, 5, 58, 22, 8} × x :

→ 5 generic multiplications vs 3 adders

There is an ILP model to obtain minimal cost adder graphs [GV23]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 9

Hardware implementation: the MCM problem

Multiplying a variable with multiple constants, the so-called
Multiple Constant Multiplication (MCM) problem

Example of an adder graph to compute {40, 5, 58, 22, 8} × x :

→ 5 generic multiplications vs 3 adders

There is an ILP model to obtain minimal cost adder graphs [GV23]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 9

Hardware implementation: using adder graphs

Shift-and-add implementations:

→ Constant multiplication cost depends on the constant

First idea: during training, at the quantization step, prefer constants
with smaller adder graph cost, e. g., only power of 2 [ECS+21]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 10

Hardware implementation: using adder graphs

Shift-and-add implementations:

→ Constant multiplication cost depends on the constant

First idea: during training, at the quantization step, prefer constants
with smaller adder graph cost, e. g., only power of 2 [ECS+21]

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 10

Progressive Adder-Aware Training

Our idea: Do not limit weight possibilities but
progressively fix weights during training instead

Key elements:

▶ Every N training steps, fix some weights

▶ Fixed weights are chosen from their implementation cost
→ power of two will be fixed first

▶ Implementation cost takes into account previously fixed weights

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 11

Progressive Adder-Aware Training: Computing Scores

67AB9F 67AB9F 67AB9F 67AB9F 67AB9F

SCM Score:

{1, 1, 2, 2, 0}

Suppose that 5 has been
fixed previously:

{0,−, 2, 1, 0}

For basic score, we can use a standard SCM approach
→ for example, an ILP model [GV23]
To consider fixed weights, we need to solve a new problem
→ we extend the SCM model

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 12

Progressive Adder-Aware Training: Computing Scores

67AB9F 67AB9F 67AB9F 67AB9F 67AB9F

SCM Score:

{1, 1, 2, 2, 0}

Suppose that 5 has been
fixed previously:

{0,−, 2, 1, 0}

For basic score, we can use a standard SCM approach
→ for example, an ILP model [GV23]
To consider fixed weights, we need to solve a new problem
→ we extend the SCM model

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 12

Progressive Adder-Aware Training: Computing Scores

67AB9F 67AB9F 67AB9F 67AB9F 67AB9F

SCM Score:

{1, 1, 2, 2, 0}

Suppose that 5 has been
fixed previously:

{0,−, 2, 1, 0}

For basic score, we can use a standard SCM approach
→ for example, an ILP model [GV23]
To consider fixed weights, we need to solve a new problem
→ we extend the SCM model

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 12

Progressive Adder-Aware Training: Computing Scores

67AB9F 67AB9F 67AB9F 67AB9F 67AB9F

SCM Score:

{1, 1, 2, 2, 0}

Suppose that 5 has been
fixed previously:

{0,−, 2, 1, 0}

For basic score, we can use a standard SCM approach
→ for example, an ILP model [GV23]
To consider fixed weights, we need to solve a new problem
→ we extend the SCM model

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 12

Progressive Adder-Aware Training: SCM inspired model

The key of the model is “adders” modeling:

2saca︸︷︷︸
cnsha

= (−1)σa,l 2sa,l ca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r ca,r︸︷︷︸
csha,r︸ ︷︷ ︸

csh,sga,r

▶ c1,l,0 = 1 and c1,r ,0 = 1;

▶ c2,l,0 = 0 and c2,r ,0 = 1 and
c2,l,1 = 1 and c2,r ,1 = 0;

▶ c1,l = 1 and c1,r = 1 and
c2,l = 5 and c2,r = 1;

▶ s1,l = 2 and s1 = 0 and
s2,l = 1 and s2 = 0;

▶ σ1,l = 0 and σ1,r = 0 and
σ2,l = 0 and σ2,r = 0;

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 13

Progressive Adder-Aware Training: SCM inspired model

The key of the model is “adders” modeling:

2saca︸︷︷︸
cnsha

= (−1)σa,l 2sa,l ca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r ca,r︸︷︷︸
csha,r︸ ︷︷ ︸

csh,sga,r

▶ c1,l,0 = 1 and c1,r ,0 = 1;

▶ c2,l,0 = 0 and c2,r ,0 = 1 and
c2,l,1 = 1 and c2,r ,1 = 0;

▶ c1,l = 1 and c1,r = 1 and
c2,l = 5 and c2,r = 1;

▶ s1,l = 2 and s1 = 0 and
s2,l = 1 and s2 = 0;

▶ σ1,l = 0 and σ1,r = 0 and
σ2,l = 0 and σ2,r = 0;

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 13

Progressive Adder-Aware Training: SCM inspired model

The key of the model is “adders” modeling:

2saca︸︷︷︸
cnsha

= (−1)σa,l 2sa,l ca,l︸ ︷︷ ︸
csha,l︸ ︷︷ ︸

csh,sga,l

+(−1)σa,r ca,r︸︷︷︸
csha,r︸ ︷︷ ︸

csh,sga,r

▶ c1,l,0 = 1 and c1,r ,0 = 1;

▶ c2,l,0 = 0 and c2,r ,0 = 1 and
c2,l,1 = 1 and c2,r ,1 = 0;

▶ c1,l = 1 and c1,r = 1 and
c2,l = 5 and c2,r = 1;

▶ s1,l = 2 and s1 = 0 and
s2,l = 1 and s2 = 0;

▶ σ1,l = 0 and σ1,r = 0 and
σ2,l = 0 and σ2,r = 0;

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 13

Progressive Adder-Aware Training: SCM-inspired model

To consider fixed weights F, we define ca for all a ∈ [[− |F| ,N]]

Then we fix “starting” ca’s:

ca = F−a ∀a ∈ [[− |F| ,−1]]

We can compute a score taking into account fixed weights

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 14

Progressive Adder-Aware Training: SCM-inspired model

To consider fixed weights F, we define ca for all a ∈ [[− |F| ,N]]

Then we fix “starting” ca’s:

ca = F−a ∀a ∈ [[− |F| ,−1]]

We can compute a score taking into account fixed weights

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 14

Progressive Adder-Aware Training: SCM-inspired model

To consider fixed weights F, we define ca for all a ∈ [[− |F| ,N]]

Then we fix “starting” ca’s:

ca = F−a ∀a ∈ [[− |F| ,−1]]

We can compute a score taking into account fixed weights

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 14

Comparing hardware implementations

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost

▶ Processing Elements (PE) can
be changed as needed

▶ HLS code generation: easily
interchangeable components

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 15

Comparing hardware implementations

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost

▶ Processing Elements (PE) can
be changed as needed

▶ HLS code generation: easily
interchangeable components

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 15

Comparing hardware implementations

▶ Systolic Array with a weight
stationary dataflow design: a
trade-off between parallelism
and hardware cost

▶ Processing Elements (PE) can
be changed as needed

▶ HLS code generation: easily
interchangeable components

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 15

Comparing hardware implementations

CNN Method LUT (%) FF (%) DSP (%)

ResNet-20
Generic Mult. 15.17 1.90 0
DSPs 3.91 0.90 68.06
Adder graph 8.49 1.54 0

ResNet-18
Generic Mult. 64.94 9.44 0
DSPs − − 308†

Adder graph 41.82 7.05 0

VDSR-10
Generic Mult. > 100% − −

VDSR-10 DSPs − − 616†

Adder graph 97.87 14.59 0

†indicates an estimation as place and route was not possible
Xilinx ZCU104 board

▶ Using only DSPs is not reasonable

▶ Using adder graphs leads to lower resource consumption than letting
the tool decide

→ Using adder graphs in CNNs looks interesting

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 16

Comparing hardware implementations

CNN Method LUT (%) FF (%) DSP (%)

ResNet-20
Generic Mult. 15.17 1.90 0
DSPs 3.91 0.90 68.06
Adder graph 8.49 1.54 0

ResNet-18
Generic Mult. 64.94 9.44 0
DSPs − − 308†

Adder graph 41.82 7.05 0

VDSR-10
Generic Mult. > 100% − −

VDSR-10 DSPs − − 616†

Adder graph 97.87 14.59 0

†indicates an estimation as place and route was not possible
Xilinx ZCU104 board

▶ Using only DSPs is not reasonable

▶ Using adder graphs leads to lower resource consumption than letting
the tool decide

→ Using adder graphs in CNNs looks interesting
Hardware-Aware Training for Multiplierless Convolutional Neural Networks 16

Adder-Aware Training vs Quantization-Aware Training

CNN Method LUT (%) FF (%)

ResNet-20
Classic QAT 8.49 1.54
Our AAT 6.19 1.20

ResNet-18
Classic QAT 41.82 7.05
Our AAT 23.46 4.23

VDSR-10
Classic QAT 97.87 14.59
Our AAT 81.54 12.15

▶ HW cost reduced by ∼25% for a layer of ResNet-20

▶ HW cost reduced by ∼40% for a layer of ResNet-18

▶ HW cost reduced by ∼16% for a layer of VDSR-10

→ Hypothesis: more parallelism to exploit in ResNet-18

Disclaimer: no HW comparison with SotA AAT approaches

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 17

Adder-Aware Training vs Quantization-Aware Training

CNN Method LUT (%) FF (%)

ResNet-20
Classic QAT 8.49 1.54
Our AAT 6.19 1.20

ResNet-18
Classic QAT 41.82 7.05
Our AAT 23.46 4.23

VDSR-10
Classic QAT 97.87 14.59
Our AAT 81.54 12.15

▶ HW cost reduced by ∼25% for a layer of ResNet-20

▶ HW cost reduced by ∼40% for a layer of ResNet-18

▶ HW cost reduced by ∼16% for a layer of VDSR-10

→ Hypothesis: more parallelism to exploit in ResNet-18

Disclaimer: no HW comparison with SotA AAT approaches
Hardware-Aware Training for Multiplierless Convolutional Neural Networks 17

Adder-Aware Training vs Quantization-Aware Training

QAT PoT More AddNet
[HHW+23]

Our95

96

97

98

99

100
no

rm
al

ize
d

ac
cu

ra
cy

FP32 Ref
ResNet-18
ResNet-20
VDSR-10

FP32 Ref: ResNet-18: 73.1%, ResNet-20: 92.8%, VDSR: 34.03dB

▶ AAT accuracy < QAT accuracy
→ the AAT problem is more constrained

▶ Progressive AAT accuracy > Precomputed sets AAT accuracy
→ not all weight values are allowed

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 18

Adder-Aware Training vs Quantization-Aware Training

QAT PoT More AddNet
[HHW+23]

Our95

96

97

98

99

100
no

rm
al

ize
d

ac
cu

ra
cy

FP32 Ref
ResNet-18
ResNet-20
VDSR-10

FP32 Ref: ResNet-18: 73.1%, ResNet-20: 92.8%, VDSR: 34.03dB

▶ AAT accuracy < QAT accuracy
→ the AAT problem is more constrained

▶ Progressive AAT accuracy > Precomputed sets AAT accuracy
→ not all weight values are allowed

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 18

Adder-Aware Training vs Quantization-Aware Training

QAT PoT More AddNet
[HHW+23]

Our95

96

97

98

99

100
no

rm
al

ize
d

ac
cu

ra
cy

FP32 Ref
ResNet-18
ResNet-20
VDSR-10

FP32 Ref: ResNet-18: 73.1%, ResNet-20: 92.8%, VDSR: 34.03dB

▶ AAT accuracy < QAT accuracy
→ the AAT problem is more constrained

▶ Progressive AAT accuracy > Precomputed sets AAT accuracy
→ not all weight values are allowed

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 18

Conclusion and perspectives

▶ We propose a new Adder-Aware Training approach

→ Key idea: progressively fix weights
→ This approach relies on solving an optimization problem

▶ Multiple experiments to have accuracy and hardware results

→ More constraints on the problem leads to accuracy loss
→ A new flexible hardware accelerator
→ Using adder graphs for neural networks implementation is promising
→ Adder-Aware Training leads to significant hardware cost reduction

w. r. t. a vanilla QAT approach

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 19

Conclusion and perspectives

Next steps:

▶ Accuracy and hardware comparison with existing AAT approaches

▶ Hardware comparison over a complete CNN

▶ Speeding up the score computation

▶ Applying Adder-Aware Training approaches to other models (LLMs?)

▶ Free weights according to their gradient

▶ Find a balance between adder graphs and DSPs

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 20

[ECS+21] Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, and Joey Yiwei Li,
DeepShift: Towards Multiplication-Less Neural Networks, Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2021, pp. 2359–2368.

[GAGN15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan, Deep
Learning with Limited Numerical Precision, Proceedings of the 32nd International
Conference on Machine Learning (Lille, France) (Francis Bach and David Blei, eds.),
Proceedings of Machine Learning Research, vol. 37, PMLR, July 2015, pp. 1737–1746.

[GKD+21] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt
Keutzer, A survey of quantization methods for efficient neural network inference. corr
abs/2103.13630 (2021), arXiv preprint arXiv:2103.13630 (2021).

[GV23] Rémi Garcia and Anastasia Volkova, Toward the Multiple Constant Multiplication at
Minimal Hardware Cost, IEEE Transactions on Circuits and Systems I: Regular Papers
70 (2023), no. 5, 1976–1988.

[HHW+23] Martin Hardieck, Tobias Habermann, Fabian Wagner, Michael Mecik, Martin Kumm,
and Peter Zipf, More AddNet: A deeper insight into DNNs using FPGA-optimized
multipliers, 2023 IEEE International Symposium on Circuits and Systems (ISCAS),
vol. abs/1308.3432, IEEE, May 2023, pp. 1–5.

[HKKV22] Tobias Habermann, Jonas Kühle, Martin Kumm, and Anastasia Volkova,
Hardware-Aware Quantization for Multiplierless Neural Network Controllers, 2022
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), IEEE, November
2022.

[ZWN+16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou,
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients, 2016.

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 21

Conclusion and perspectives

▶ We propose a new Adder-Aware Training approach
→ Key idea: progressively fix weights
→ This approach relies on solving an optimization problem

▶ Multiple experiments to have accuracy and hardware results
→ More constraints on the problem leads to accuracy loss
→ A new flexible hardware accelerator
→ Using adder graphs for neural networks implementation is promising
→ Adder-Aware Training leads to significant hardware cost reduction

w. r. t. a vanilla QAT approach

Thank you! Questions?

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 22

Hardware-Aware Training for Multiplierless
Convolutional Neural Networks

Rémi Garcia, Léo Pradels, Silviu Filip, Olivier Sentieys

May, 5th 2025

Université de Rennes, IRISA, Inria

Comparing hardware implementations

Comparing different PE implementations:

▶ Using adder graphs

▶ Using DSPs

▶ Letting the synthesis tool decide (using ∗ operator)

Context:

▶ ResNet-20, ResNet-18 and VDSR-10 networks

▶ CIFAR-10, ImageNet-1K and Set291/Set5 datasets

▶ 8-bit Quantization-Aware Training

▶ Training calls an MILP solver for scores: Gurobi through Pyomo

▶ Xilinx ZCU104 board

▶ Results for a single layer, including the systolic array cost

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 24

Progressive Adder-Aware Training: Solving the ILP model

▶ Models are small

→ ∼30− 200 variables
→ ∼50− 250 constraints

▶ Solving times are negligible

→ < 1s

▶ ResNet-18 on ImageNet-1K: Training time ∼24h (∼21h + ∼3h)

→ The ILP model is not a bottleneck

Training on abacus 17 Grid5K (RTX 2080TI)

Hardware-Aware Training for Multiplierless Convolutional Neural Networks 25

