
A Generic Modulo-(2𝑛 ± 𝛿) Addition Algorithm

via Two-Valued Digit Encoding

Saeid Gorgin1, Amirhossein Sadr2,3, Dara Rahmati3, Jungrae Kim1

1 Department of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea
2 School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

3 Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

me@sgorgin.com, a.sadr@ipm.ir, d_rahmati@sbu.ac.ir, dale40@skku.edu

Abstract—Modular adders are essential arithmetic

components in Residue Number System (RNS)-based

applications, including digital signal processing, cryptography,

and machine learning. These applications consistently push the

boundaries of dynamic range (DR) and operating frequency,

making the design of efficient generic modular adders a critical

and evolving challenge. This paper presents a novel algorithm

for modulo-(𝟐𝒏 ± 𝛅) addition, where 𝛅 is an integer within the

range 𝟎 ≤ 𝜹 ≤ 𝟐𝒏−𝟏 − 𝟏. The proposed approach leverages

a two-valued digit (twit) for encoding the value of ±𝛅 and uses a

faithful representation of operands. In this representation, each

operand is encoded as an 𝒏-bit unsigned number augmented by

a twit value {𝟎,±𝛅} . The algorithm efficiently performs

modular addition by speculating and adjusting the twit value in

the addition result. When the result exceeds the modulus, it

subtracts 𝟐𝒏 ± 𝛅 by ignoring the carry-out and adjusting the

speculated twit value. This adjustment is achieved through an

XOR operation between the carry-out and the speculated twit

value, simplifying the modular reduction process. The proposed

design has been synthesized for practical 𝒏 (𝟒 ≤ 𝒏 ≤ 𝟏𝟔) using

a FreePDK 45 nm process. The results demonstrate superior

performance across key metrics such as delay, area, and power

consumption compared to previous designs, highlighting the

efficacy and scalability of the approach.

Keywords—Residue Number System (RNS), Modular

addition, Generic adder, Two-Valued Digit (Twit).

I. INTRODUCTION

The RNS is one of the most well-known unconventional
number representations, attracting significant interest in
fields such as communications [26], cryptography [1], neural
networks [27], and digital signal/image processing [21].
These applications demand high-performance, low-power
arithmetic circuits. RNS achieves its advantages through a
high level of parallelism and reduced carry propagation,
making it particularly attractive for addition- and
multiplication-intensive workloads (e.g., convolution
operations [29]). Thus, the efficiency of modular addition is
critical for applications relying on RNS, as modular
multipliers essentially perform successive modular additions
[20], [11], [25].

Extensive research has focused on optimizing modular

addition for specific moduli, such as 2𝑛 ± 1, to balance delay

within the classical moduli set τ = {2𝑛, 2𝑛 ± 1} [35], [30],

[32], [34], [3], [5], [33], [14], [15], [29]. More recently,

innovative designs have been proposed for moduli, such as

(2𝑛 ± 3) [6], [16] and (2𝑛 − 2𝑘 − 1) [18]. These designs

aim to increase the number of co-prime moduli for greater

dynamic range or to enable higher operating frequencies by

reducing channel width. However, these approaches are not

sufficient to meet the growing demand for higher

performance and greater dynamic range.

A promising response to this challenge is the development

of efficient generic modulo adders that can handle any

required co-prime modulus. While previous works have

proposed generic designs, such as [2] and [12], these efforts

are relatively modest compared to the extensive

optimizations designed for 2𝑛 ± 1 adders. These designs

typically rely on computing the sum of two operands and

applying a reduction step when the sum exceeds the modulus,

requiring at least two Carry-Propagate Adders (CPAs) and a

multiplexer to select the correct result.

In this paper, we present a new efficient generic modulo-

(2𝑛 ± δ) addition algorithm, where δ is an integer in the

range 0 ≤ δ ≤ 2𝑛−1 − 1. The proposed design introduces a

novel representation where the ±δ bias is encoded as a twit

value {0, ±δ} . In this encoding, all codewords are valid,

allowing redundant representations. The algorithm avoids

needing two CPAs and a multiplexer by speculating the twit

value with a simple 4-input combinational logic block. This

block takes, as inputs, the most significant bit and twit values

of each operand. Additionally, it generates a compensating

value to ensure the sum of the speculated twit and

compensating value aligns with the weighted sum of the

block inputs. The final result is computed by summing the

compensating value with the remaining operand bits. This

summation can occasionally produce a carry-out when the

speculated twit value equals one. In such cases, the twit value

is corrected to zero (i.e., reducing ∓δ) by XORing the carry-

out with the speculated twit value, ensuring the final result's

correctness while maintaining the design's efficiency.

We evaluate the proposed design using both analytical

and experimental methods. Analytical evaluation highlights

the algorithm's superiority over prior designs. Synthesis

results, performed using Synopsys Design Compiler with the

FreePDK 45nm technology library, confirm the analytical

findings. The results demonstrate improvements in delay,

area, and power consumption. This paper makes the

following contributions:

• Introduces an efficient use of the twit representation for

residue encoding in modulo-(2𝑛 ± δ).
• Proposes a generic modulo- (2𝑛 ± δ) addition

algorithm.

• Achieves low-cost subtraction equivalent to

conventional binary representations.

• Provides comprehensive analysis and comparison of the

proposed design against related works.

• Demonstrates fault tolerance using Reconfigurable

Modular Adders (RMAs) for fault-tolerant RNS

processors.

The remainder of this paper is structured as follows.

Section II provides an overview of RNS, generic modulo-

(2𝑞 ± δ) addition, and weighted bit set encoding with twit

representation. Section III reviews related works. Section IV

details the proposed generic modulo addition algorithm.

Section V presents evaluations and comparisons with prior

designs. Finally, Section VI concludes the paper.

85

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00023

Availability: To promote reproducibility, transparency, and

further advancements in the field, the HDL codes developed

during this study have been made publicly available at

https://github.com/GorginSaeid/Generic-Modulo-Adder.

II. BACKGROUND

A. Residue Number System (RNS)

The RNS encoding is an alternative integer representation

in which a number 𝑋 ∈ [0,𝑀) is represented as 𝑋𝑅𝑁𝑆 =

(𝑥1, … , 𝑥𝑘), where for 1 ≤ 𝑖 ≤ 𝑘, 𝑥𝑖 = |𝑋|𝑚𝑖 ∈ [0,𝑚𝑖) (i.e.,

the remainder of integer division 𝑋/𝑚𝑖 , read as 𝑋 modulo

𝑚𝑖). The dynamic range (DR) is given by 𝑀 = 𝑚1 ×𝑚2 ×
…𝑚𝑘 , assuming that the moduli {𝑚1, … ,𝑚𝑘} are mutually

prime, which is commonly the case [20].

RNS representation enables parallel computation across

different residues, while the long carry chains in doing

arithmetic on conventional binary numbers 𝑋, 𝑌 ∈ [0,𝑀), are

broken into small bit-widths of the 𝑘 parallel residue

channels (one per each modulo 𝑚𝑖). The arithmetic operation

(typically addition or multiplication) is performed on the

corresponding residues 𝑥𝑖 and 𝑦𝑖 which are generated via the

forward binary-to-modulo- 𝑚𝑖 conversion for 1 ≤ 𝑖 ≤ 𝑘 .

The results of a series of RNS operations (e.g., in convolution

[7]) are then subject to reverse conversion back to binary via

the Chinese Remainder Theorem (CRT).

B. Generic Modulo Addition Algorithm

A generic modulo addition algorithm computes the result

of |𝐴 + 𝐵|𝑚 = (𝐴 + 𝐵) 𝑚𝑜𝑑 𝑚, where 𝑚 is of the form

2𝑛 ± δ, and 𝐴 and 𝐵 are remainders from division by 𝑚 (i.e.,

𝐴, 𝐵 < 𝑚). Unlike specific modulo operations that exploit

predefined structures of the modulus, such as 2𝑛 ± 1 or 2𝑛 ±
3, generic algorithms must accommodate a wider range of

modulus values. This flexibility introduces additional

complexity, particularly in managing carries and performing

reduction steps, which are inherently more challenging in

generic designs. The general modulo addition operation is

mathematically expressed in Equation (1), adhering to the

conventional definition:

|𝐴 + 𝐵|𝑚 = {
𝐴 + 𝐵, if 𝐴 + 𝐵 < 𝑚
𝐴 + 𝐵 −𝑚 , if 𝐴 + 𝐵 ≥ 𝑚

 (1)

The direct implementation of Equation (1) is illustrated in

Fig. 1(a) [2]. To avoid the computationally expensive

propagation of two 𝑛-bit CPA on critical path delay, both

𝐴 + 𝐵 and 𝐴 + 𝐵 −𝑚 can be computed simultaneously in

two parallel paths. In the path handling 𝐴 + 𝐵 −𝑚, a Carry-

Save Adder (CSA) is utilized to sum 𝐴 , 𝐵 , and two’s

complement of 𝑚, before the final 𝑛-bit carry propagation

[31]. The correct result is then selected between the two

parallel computations based on the carry-out of the speculated

sum, as demonstrated in Fig. 1(b). This approach reduces

latency and improves the overall efficiency of the generic

modulo adder.

Generic modulo adders play a critical role in increasing the

dynamic range and reducing the bit-width of data channels,

enabling higher operating frequencies in digital systems.

However, designing such components is inherently complex

due to the need to support a wide range of modulus values

and the associated challenges of end-around carry handling.

The most significant advancements in this area will be

reviewed in Section III-B.

(a) Sequential implementation [2] (b) Parallel implementation [31]

Fig. 1. Abstract view of generic Modulo-𝑚 addition

C. Two-Valued Digit

Similar to a binary digit, or bit, which can take on two

values, 0 or 1 , a two-valued digit represents two distinct

values, denoted as α and β [23]. In this work, the two-valued

digit is specifically employed to encode the values ±𝛿 as

{0, ± 𝛿} . This encoding reduces storage requirements and

simplifies the arithmetic operations required in the proposed

modular reduction algorithm.

The foundation of this approach lies in the Weighted Bit-

Set (WBS) encoding framework, which generalizes

conventional binary representation schemes [13]. WBS

encoding represents digits as weighted bit-sets, enabling

efficient arithmetic operations such as addition, subtraction,

and carry handling. The two-valued digit, referred to as a

“twit”, extends this concept by introducing a gap-based

representation that preserves redundancy benefits while

minimizing hardware overhead.

A twit is formally defined as a binary variable capable of

representing two integer values, determined by a lower value

𝐿 and a gap 𝐺. Formally, a twit represents the set {𝐿, 𝐿 + 𝐺}.
In this work, we define 𝐿 = 0 and 𝐺 = ±𝛿, leading to the

digit set {0, ± δ} . This representation is compact and

efficient, eliminating the need for additional bits while

maintaining compatibility with VLSI implementations [13].

III. PRIOR WORKS

A. Specific Modulo Adders

As previously mentioned, extensive research has focused

on the development of modulo-(2𝑛 ± 1) adders. Alongside

these designs, several proposals address specific moduli, such

as (2𝑛 ± 3), employing innovative techniques that leverage

predictable carry patterns. These designs often achieve

optimized latency and area efficiency through specialized

hardware architectures, including parallel-prefix and carry-

select adder mechanisms.

For example, efficient VLSI implementations for

modulo- (2𝑛 − 1) adders have been proposed, optimizing

both area and delay [35]. Parallel-prefix adders that eliminate

the end-around carry for modulo-(2𝑛 − 1) addition have also

been introduced, significantly minimizing delay [17].

Enhanced diminished-one adders for modulo- (2𝑛 + 1)
arithmetic have been developed, focusing on simplified carry

recirculation [30], while fast modulo-(2𝑛 + 1) adders based

on parallel-prefix architectures have been proposed [32].

Ling-carry and sparse-prefix architectures have been utilized

to improve area and delay trade-offs in large modulo-(2𝑛 −

86

1) designs [3]. Extensions to these methods introduced

parallel-prefix architectures for modulo-(2𝑛 + 1) arithmetic

[5]. Other contributions include sparse carry computation

methods for modulo- (2𝑛 ± 1) designs [34], efficient

adder/subtractor designs [33], and signed-LSB residue

approaches for modular arithmetic [14].

A double {0, 1, 2} representation for modulo- (2𝑛 − 3)
adders have been proposed to reduce carry propagation delay

for small moduli [6]. Further advancements include the

Diminished-3 representation for modulo-(2𝑛 + 3) , which

optimizes performance using balanced parallel-prefix

techniques [16]. Additionally, flexible modular adders for

2𝑛 − 2𝑘 − 1 have been developed using carry-correction

techniques to improve speed and efficiency [18].

B. Generic Modulo Adders

One of the earliest generic modular adder architectures

was proposed in [2], utilizing simple binary adders and

multiplexers. Later, a generic residue adder using one binary

adder and a feedback register was introduced in [4]. In [10],

hybrid adders for 2𝑛 ± δ moduli were proposed, merging

carry-propagate and carry-save structures. This approach was

further refined in [31] to improve delay characteristics.

A power-efficient CPA-based design combining Kogge-

Stone and Ladner-Fischer adders to reduce overhead and

achieve near-optimal delay was presented in [24]. Parallel-

prefix architectures suitable for residue number systems were

investigated in [19], achieving a balance between hardware

complexity and performance. A unified modular

adder/subtractor with improved speed, area, and power

metrics was developed in [28]. In [12], general 2𝑛 ± δ

architectures leveraging tristate-based multiplexers were

introduced, achieving marginal improvements. Finally, a

flagged-prefix addition method focusing on reduced power

and area for arbitrary moduli was proposed in [8].

Furthermore, some studies, such as [9], have explored generic

adders implemented on FPGA platforms. However, these

designs heavily rely on FPGA-specific architectural features

and are not discussed in this paper.

IV. GENERIC MODULO-(2𝑛 ± 𝛅) OPERATIONS

This section provides a detailed explanation of the

proposed algorithm. We begin by introducing the operand

encoding method, focusing on the use of twit encoding in

order to represent operands in the modulo (2𝑛 ± δ). Next, the

addition algorithm is described in detail, accompanied by

numerical examples to illustrate the process. Following this,

we discuss the negation process within the proposed format

and extend the discussion to the subtraction operation.

Finally, we outline our approach for designing reconfigurable

adders that support various moduli based on

modulo-(2𝑛 ± δ) adders. This design lays the groundwork

for a fault-tolerant RNS processor, enabling more robust and

flexible computation.

A. Operand Representation

The proposed representation encodes each operand as an

𝑛-bit unsigned integer, augmented by a twit value {0, ±δ},
and stores it in memory as an (𝑛 + 1)-bit number, represented

as 𝑎𝑛−1𝑎𝑛−2…𝑎2𝑎1(𝑎0δ𝑎) . This approach is conceptually

similar to the double least significant bit (LSB) representation

[22] in terms of memory usage, but instead of using an extra

bit in the LSB position, it employs a twit. It simplifies

hardware implementation while maintaining compatibility

across different values of ±δ. All codewords are valid within

this representation. For negative values of δ (−δ), every

representable value in modulo-(2𝑛 − δ) has more than one

equivalent form, where representations with a negative value

or greater than the modulus are also considered after a

modulo operation. However, for positive values of δ (+δ)

(i.e., modulo-(2𝑛 + δ)), only certain values possess dual

representations.

The mathematical properties of two-valued digit make

this representation particularly beneficial for modular

arithmetic. Using this format, modular operations are

streamlined by efficiently handling the end-around carry of

±δ . This simplifies the result adjustment, allowing the

desired final value to be computed with lower computational

overhead.

Although a remainder from a modulus 2𝑛 − δ can be

represented using only 𝑛 -bit, the proposed (𝑛 + 1)-bit

representation (including the twit) offers significant

advantages. The extra bit enables a unified representation for

both 2𝑛 − δ and 2𝑛 + δ, facilitating a generic modulo-(2𝑛 ±
δ) system. This unified framework enhances versatility and

provides computational fault tolerance, as will be further

detailed in Section IV-D.

Example 1: Consider 𝑛 = 5 and δ = 7.

• For modulo-(25 − 7), the value 15 can be represented as
0111 (1𝟎) (using δ𝑎 = 𝟎) or 1011 (0𝟏) (using δ𝑎 = 𝟏).
In the first representation, where δ𝑎 = 0 , 0111 (1𝟎)
corresponds directly to 15 , as (01111)2 = 15 . In the
second representation, where 𝛿𝑎 = 1 , 1011 (0𝟏)
corresponds to 15 because (10110)2 = 22 , and 22 −
7 = 15.

• For modulo-(25 + 7) , the value 15 can be represented as
to 0111 (1𝟎) or 0100 (0𝟏) . Similarly, in the first
representation (δ𝑎 = 𝟎), 0111 (1𝟎) corresponds directly
to 15 . In the second representation, where δ𝑎 = 𝟏 ,
0100 (0𝟏) corresponds to 15 because (01000)2 = 8 ,
and 8 + 7 = 15.

B. Addition Algorithm

Besides utilizing parallel paths to enhance the

performance of the addition algorithm, Equation (1) can be

reformulated as Equation (2) to simplify the comparison

between 𝐴 + 𝐵 and 𝑚. Given 𝑚 = 2𝑛 ± δ, the comparison

reduces to checking the carry-out of 𝐴 + 𝐵 + θ, where θ = δ

and �̂� = 𝑛 for modulo-(2𝑛 − δ). While for modulo-(2𝑛 +
δ), θ is the two’s complement of δ and �̂� = 𝑛 + 1.

|𝐴 + 𝐵|2𝑛±δ = {
|𝐴 + 𝐵|2�̂� , if 𝐴 + 𝐵 + θ < 2�̂�

|𝐴 + 𝐵 + θ|2�̂� , if 𝐴 + 𝐵 + θ ≥ 2�̂�
(2)

Unlike this conventional approach, the proposed addition

algorithm takes a different route, relying on speculating the

twit value in the result. Algorithm 1 describes the process in

detail. By examining the most significant bits (i.e., 𝑎𝑛−1 and

𝑏𝑛−1) and the twit of two operands (i.e., δ𝑎 and δ𝑏), the

algorithm speculates a twit value (i.e., δ𝜀) and computes a

compensating value (i.e., 𝑍). After summing the lower bits of

the two operands along with 𝑍, the result includes an 𝑛-bit

sum (i.e., 𝑠𝑛−1𝑠𝑛−2…𝑠1𝑠0) and a carry-out value (i.e., 𝐶𝑜𝑢𝑡).
The carry-out is then used to apply an end-around carry with

a value of −δ for modulo-(2𝑛 + δ) or +δ for modulo-(2𝑛 −

87

δ). Since the speculated twit value δ𝜀 already incorporates

the adjustment for ±δ, the end-around carry is performed by

zeroing the final twit (δ𝑠) using an XOR operation with δ𝜀.
Notably, when the twit value is zero, the carry-out will also

be zero.

Algorithm 1: Modulo-(2𝑛 ± δ) Addition (δ < 2𝑛−1)

Inputs: 𝐴 = 𝑎𝑛−1𝑎𝑛−2…𝑎2𝑎1(𝑎0δ𝑎),
 𝐵 = 𝑏𝑛−1𝑏𝑛−2…𝑏2𝑏1(𝑏0δ𝑏).
Output: 𝑆 = 𝑠𝑛−1𝑠𝑛−2…𝑠2𝑠1(𝑠0δ𝑠).
Intermediate variable: 𝑍 = 𝑧𝑛−1𝑧𝑛−2…𝑧1𝑧0, δ𝜀
Compute intermediate 𝑍, and speculated twit δ𝜀:

 𝑍 = |(𝑎𝑛−1 + 𝑏𝑛−1)2
𝑛−1 + δ𝑎 + δ𝑏|2𝑛±𝛿⏟
𝑉

− δ𝜀,

where δ𝜀 = {
0, 𝑉 = 0
1, 𝑉 > 0

Compute sum and carry-out:

𝐶𝑜𝑢𝑡𝑠𝑛−1𝑠𝑛−2…𝑠1𝑠0 =
𝑎𝑛−2…𝑎1𝑎0 + 𝑏𝑛−2…𝑏1𝑏0 + 𝑧𝑛−1𝑧𝑛−2…𝑧1𝑧0

Final twit adjustment:

δ𝑠 = 𝐶𝑜𝑢𝑡 ⨁ δ𝜀.

The hardware implementation of this algorithm is

illustrated symbolically in Fig. 2. The process begins with the

computation of 𝑍 (step) and continues with a CSA in step

. Notably, the computation of 𝑎𝑖⨁𝑏𝑖 can be performed

simultaneously with the corresponding logic to compute 𝑍.

The second part of step uses a CPA to sum the intermediate

results, Σ = 𝜎𝑛−1 𝜎𝑛−2 … 𝜎2𝜎1𝜎0 (where 𝜎𝑛−1 = 𝑧𝑛−1) and

Φ = 𝜑𝑛−1… 𝜑2𝜑10. The carry out from the CPA is then

used in step to finalize the twit value δ𝑠. The CPA can

employ various carry acceleration techniques, such as the

Kogge-Stone parallel-prefix tree, to achieve a trade-off

between performance and hardware cost.

Theorem 1: Behavior of Carry-Out When 𝛅𝜺 = 𝟎

Statement: In Algorithm 1, if δ𝜀 = 0 , then 𝐶𝑜𝑢𝑡 = 0.

Proof: From Algorithm 1, when δ𝜀 = 0, the value of 𝑍 = 0.

Since the lower 𝑛 − 1 bits of 𝐴 and 𝐵 (i.e., 𝑎𝑛−2…𝑎1𝑎0 and

𝑏𝑛−2…𝑏1𝑏0) are both less than 2𝑛−1, their sum will also be

less than 2𝑛. Therefore, the carry-out (𝐶𝑜𝑢𝑡) cannot be 1.■

Fig. 2. Hardware realization of Algorithm 1 in symbolic representation

(𝜎𝑖 = 𝑎𝑖⨁𝑏𝑖⨁𝑧𝑖 and 𝜑𝑖+1 = 𝑎𝑖𝑏𝑖 ∨ 𝑎𝑖𝑧𝑖 ∨ 𝑏𝑖𝑧𝑖)

The final two parts of Algorithm 1 (and) are

straightforward, as they involve computing the sum and

adjusting the twit value. So, we provide further clarification

for step , where the intermediate variable 𝑉 and the

compensating value 𝑍 are calculated. Since the behavior of

𝑉 = |(𝑎𝑛−1 + 𝑏𝑛−1)2
𝑛−1 + δ𝑎 + δ𝑏|2𝑛±δ depends on

whether the modulo operation is (2𝑛 + δ) or (2𝑛 − δ), we

explain each case separately.

• For modulo-(2𝑛 + δ):
Here, 𝑉 can take the values:

{0, δ, 2δ, 2𝑛−1, 2𝑛−1 + δ, 2𝑛−1 + 2δ, 2𝑛}.
▪ When 𝑉 = 0 the speculated twit value δ𝜀 is zero, and

𝑍 = 0.

▪ When 𝑉 ≠ 0, δ𝜀 = 1, and 𝑍 takes the values:

{0, δ, 2𝑛−1 − δ, 2𝑛−1, 2𝑛−1 + δ, 2𝑛 − δ}.
In its 𝑛-bit form, 𝑍 can be expressed as:

{00…00, 0δ𝑛−2… δ1δ0, 0δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1,
10…00, 1δ𝑛−2… δ1δ0, 1δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1}.

• For modulo-(2𝑛 − δ):
Here, 𝑉 can take the values:

{0, δ, 2𝑛−1 − 2δ, 2𝑛−1 − δ, 2𝑛 − 3δ,
2𝑛 − 2δ, 2𝑛−1} .

▪ When 𝑉 = 0, δ𝜀 = 0, and 𝑍 = 0.

▪ When 𝑉 ≠ 0, δ𝜀 = 1, and 𝑍 takes the values:

{0, 2𝛿, 2𝑛−1 − 𝛿, 2𝑛−1, 2𝑛−1 + 𝛿, 2𝑛 − 2𝛿}.
In its 𝑛-bit form, 𝑍 can be expressed as:

{00…00, δ𝑛−2… δ1δ00, 0δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1,
10… 00, 1δ𝑛−2… δ1δ0, δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 2}.

Example 2: Consider 𝑛 = 5 and δ = 7.

Modulo-(25 + 7)

𝐴 = 14 and 𝐵 = 19

Modulo-(25 − 7)
𝐴 = 23 and 𝐵 = 10

δ𝜀 = 1, and 𝐶𝑜𝑢𝑡 = 0

δ𝜀 = 1, and 𝐶𝑜𝑢𝑡 = 1

𝑆 = |14 + 19|39 = 33 𝑆 = |23 + 10|25 = 8

C. Subtraction Algorithm

The subtraction algorithm in the proposed number

representation follows a similar procedure to conventional

binary arithmetic, where subtraction is performed by adding

the two’s complement of the subtrahend. In this

representation, the complement of the subtrahend is obtained

the same as the two’s complement procedure, by inverting all

its bits and adding 1 to the least significant bit position.

Thus, to compute |𝐴 − 𝐵|2𝑛±δ , we can equivalently

compute |𝐴 + �̅� + 1|2𝑛±δ. Here, 2𝑛 can be written as an 𝑛-

bit number with all bits set to 1, plus 1 (i.e., 1…11 + 1).

Also, the subtrahend 𝐵 consists of the 𝑛 -bit value

𝑏𝑛−1𝑏𝑛−2…𝑏2𝑏1𝑏0 along with a twit δ𝑏 . The twit δ𝑏

evaluates to 0 when not set and ±δ when δ𝑏 = 1. So, for

2𝑛 ± δ − 𝐵 (equivalent to −𝐵), the operation involves:

�̅� + 1 = 𝑏𝑛−1̅̅ ̅̅ ̅̅ 𝑏𝑛−2̅̅ ̅̅ ̅̅ … 𝑏2̅̅ ̅ 𝑏1̅ 𝑏0̅̅ ̅ δ𝑏̅̅ ̅ + 1.

While for adding the +1, the position 𝜑0 (shaded in red

in Fig. 2) must be updated to reflect the subtraction signal

(Sub.), where 𝜑0 is 0 for addition and set to “Sub.” for

subtraction. Consequently, the subtraction cost in this

representation matches that of conventional binary

subtraction, requiring only one XOR gate compared to

addition. The corresponding circuit for combined addition

and subtraction, which accounts for this XOR gate overhead,

is illustrated in Fig. 3.

88

Fig. 3. Combined Addition/Subtraction circuit.

To clarify the functionality of the subtraction algorithm,

we provide examples for 𝑛 = 5, 𝛿 = +7, where both 𝐴 − 𝐵

and 𝐵 − 𝐴 are computed. These examples demonstrate that

the subtraction algorithm maintains consistency and

efficiency, with the additional cost of a single XOR gate for

computing the complement of the subtrahend.

Example 3: 𝐴 = 24 and 𝐵 = 19, for Modulo-25 + 7:

𝑆 = |24 − 19|39 = 5 𝑆 = |19 − 24|39 = 34

D. Toward a Fault-Tolerant RNS Processor

The unified design strategy for modulo-(2𝑛 ± δ) adders

enables the synthesis of RMAs that can process inputs for

multiple moduli based on configuration signals provided by

control circuitry (i.e., δ) [14]. This reconfigurability

facilitates fault-tolerant designs with significantly reduced

hardware redundancy compared to conventional full-

replication approaches.

As shown in Fig. 4, for a system with 𝐾 moduli, instead

of implementing 𝐾 dedicated adders, the design requires 𝐾 +
Ω RMAs, where Ω represents the number of spare units

(Gray shaded in Fig. 4). These spare adders remain idle

during normal operation and are activated when a fault is

detected in one of the operational adders. The shift-switch

logic seamlessly replaces the faulty adder with one of the Ω

spare RMAs with the corresponding configuration, ensuring

continuous operation with minimal disruption.

While this fault-tolerant strategy introduces a latency

penalty during reconfiguration, the benefits of reduced

hardware overhead and increased fault resilience make it a

highly cost-effective solution. This approach is particularly

advantageous for reliable RNS processors in applications

where fault tolerance and efficiency are critical, such as

safety-critical systems.

Fig. 4. Abstract view of a Fault-tolerant K-moduli RNS processor via

reconfigurable modulo-(2𝑛 ± δ(𝑖)) adder (adopted form [14])

V. PERFORMANCE EVALUATION AND COMPARISONS

A. Methodology

We implemented our proposed design along with three of

the most prominent prior works for comparison. These

include the first generic modulo adder design by [2], the main

improvement achieved through parallelization by [31], and

one of the best-optimized designs presented in [12].

Additionally, we included a simple binary adder as a baseline

for comparison. All designs are implemented using HDL and

verified with extensive random test vectors, as well as

manually generated vectors for corner cases.

For evaluation, we utilized both analytical estimations to

obtain a rough understanding of each design's performance

and synthesis results for a more detailed examination of

delay, area, and power consumption. The HDL

implementations are synthesized using Synopsys Design

Compiler with the FreePDK 45 nm technology under

identical conditions to ensure a fair comparison. Following

synthesis, we perform comprehensive post-synthesis

verification to validate the correctness of the synthesis

process.

B. Analytical Evaluation

Table I presents various designs' delays and hardware

costs, analyzed based on fundamental components such as the

CSA, carry generation tree, XOR gate, multiplexer, and other

combinational logic. The delay and area metrics are

expressed in terms of ∆𝐺 (i.e., the delay of a simple 2-input

gate) and #𝐺 (i.e., the number of 2-input gates), respectively.

For delay analysis, XOR gates and multiplexers incur a delay

of 2 ∆𝐺, CSA have a delay of 4 ∆𝐺, Carry generation trees

(CGTs) are modeled with a delay of (1 + 2⌈log2 𝑛⌉)∆𝐺 ,

where 𝑛 is the bit-width. While for area Analysis, XOR gates

and multiplexers require 3𝑛 #𝐺, CSA have a hardware cost

of 9𝑛 #𝐺 , and CGTs have a hardware cost of (3 +
3𝑛⌈log2 𝑛⌉ − 3𝑛) #𝐺.

Critical Path Delay (CPD) components are highlighted in

bold in Table I. For example, in the design by [31], two adders

(each implemented as a carry generation tree and an XOR

gate) are used, but only one adder contributes to the CPD. In

[12], multiplexers are implemented with three-state buffers.

As an exception, their delay is considered 1∆𝐺, denoted as

𝟏∗ in the table. For 𝑛-input combinational logic (CL), the

delay is typically ⌈log2 𝑛⌉∆𝐺 with a hardware cost of 𝑛 #𝐺.

In our proposed design, we utilize four 4-input combinational

logic blocks, resulting in a combinational delay of 2∆𝐺 and a

hardware cost of 4#𝐺 . However, this combinational logic

does not affect the CPD of the design, as it operates in parallel

with the first XOR gate of the CSA.

TABLE I. ANALYTICAL EVALUATION BASED ON BASIC COMPONENTS IN

TERMS OF DELAY (∆𝐺) AND HARDWARE COST (#𝐺)

Designs

𝒏-bit components

CL
Delay

∆𝑮

Cost

#𝑮
C

S

A

C

G

T

X

O

R

M

U

X

Binary 0 1 1 0 0
3 +
2⌈log2 𝑛⌉

3
+ 3𝑛⌈log2 𝑛⌉

[2] 0 1+1 1+1 1 0
8 +
4⌈log2 𝑛⌉

6 + 7𝑛 +
6𝑛⌈log2 𝑛⌉

[31] 𝟏 1+1 1+1 1 0
9 +
2⌈log2 𝑛⌉

6 + 16𝑛 +
6𝑛⌈log2 𝑛⌉

[12] 𝟏 1+1 𝟏 1*+1* 0
8 +
2⌈log2 𝑛⌉

6 + 19𝑛 +
6𝑛⌈log2 𝑛⌉

New 1 1 𝟏 0 1
7 +
2⌈log2 𝑛⌉

3 + 13𝑛 +
3𝑛⌈log2 𝑛⌉

89

Based on the two rightmost columns of Table I, we

present Fig. 5, which illustrates the delays and hardware costs

of the aforementioned designs in terms of ∆𝐺 and #𝐺, while

varying 𝑛 from 4-bit to 16-bit. As expected, the simple binary

design outperforms all others in both parameters. However,

the proposed design demonstrates lower delay and hardware

cost compared to the best prior works, [12] and [2],

respectively. It is important to emphasize that this analytical

estimation provides only a rough approximation of each

design's performance. The actual results may differ when

considering critical factors in real-world implementations or

more detailed simulations, such as fan-in, fan-out, the number

of metal tracks, and other physical design constraints.

(a) delay (∆𝐺)

(b) hardware cost (#𝐺)

Fig. 5. Analytical evaluation of different designs for 𝑛 (4 ≤ 𝑛 ≤ 16)

C. Performance in other RNS operations

In modular arithmetic, as in conventional binary

arithmetic, addition and subtraction serve as the foundational

operations for nearly all computations. These operations are

critical for enabling higher-level functions such as modular

multiplication, multiply-and-accumulate (MAC) operations,

and forward and reverse conversions. Their significance is

especially pronounced in scenarios involving sequential

implementations, where efficient execution directly

influences overall performance [23].

For example, in an 𝑛-bit multiplication, 𝑛 − 1 addition

operations are required, with MAC operations introducing

one additional accumulation step. Consequently, the

proposed design is expected to achieve an improvement of

approximately (𝑛 − 1)∆𝐺 for multiplication and 𝑛 ∆𝐺 for

MAC operations.

Forward conversion operations, which manage 𝑚 × 𝑛-bit

numbers, highlight the importance of efficient modular

addition and subtraction even further. These conversions

typically involve 𝑚 − 1 modular multiplications with

constant coefficients of δ and 𝑚 − 1 addition/subtraction

operations. So, any improvement in modular addition or

subtraction has a direct and significant impact on the

efficiency of these forward conversions. In reverse

converters, while modular addition plays a role in

computations, its relative importance is diminished compared

to other dominating operations.

Although, these estimations are based on the analytical

improvements for suggested designs which are supported by

synthesis outcomes (See Section V-D), however, for a

comprehensive evaluation it is essential to implement and

synthesize corresponding circuits.

D. Synthesis Results

The synthesis results of selected modulo-(2𝑛 + δ) adders

for two different channel widths (i.e., 𝑛, δ = 8, 11 and

16, 63) are summarized in Table II. For comparison, we

include the synthesis results of a simple binary adder as a

baseline. According to Table II, the proposed design

demonstrates varying degrees of improvement depending on

the channel width. For 𝑛 = 8, the proposed design achieves

a 12% speedup and a 18% area reduction, while for 𝑛 = 16,

the improvements are 5% in speed and 17% in area compared

to the best existing designs.

In terms of power consumption, the proposed design

consumes more power than [31] for 𝑛 = 8, whereas for 𝑛 =
16, the power consumption is comparable. To ensure a fair

comparison, considering the differing delays of these designs,

we evaluate the Power Delay Product (PDP). The proposed

design outperforms [31] in PDP by 3% for 𝑛 = 8 and 8% for

𝑛 = 16, making it a more power-efficient option when delay

is factored in.
TABLE II.

SYNTHESIS REPORT OF DIFFERENT DESIGNS FOR 𝒏, 𝛅 = 8, 11 AND 16, 63.

(𝒏, 𝛅) Designs
Delay
𝒑𝒔

Area
𝝁𝒎𝟐

Power
𝝁𝑾

PDP
𝒑𝒔 × 𝝁𝑾

(𝟖, 𝟏𝟏)

Binary 205 297 96 19680

[2] 415.9 607 230 95657

[31] 350.7 734 192 67334

[12] 365.5 615 252 92106

New 307.6 498 212 65211

(𝟏𝟔, 𝟔𝟑)

Binary 316 522 182 57512

[2] 501.1 1061 406 203447

[31] 442.2 1254 393 173785

[12] 427.3 1209 497 212368

New 406.8 876 392 159466

To validate the design further, we investigated area and

power across various time constraints. By sweeping time

constraints from 1ns to the minimum achievable delay in

50ps decrements steps, we generated a comprehensive view

of each design's characteristics, as shown in Fig. 6. While

some outliers exist due to synthesizer behavior, the overall

trends confirm the efficiency of the proposed design.

(a) area

(b) Power

Fig. 6. Synthesis report with different time constraints for 𝑛, δ = 8, 11

𝜇𝑊

𝜇𝑚2

#𝐺

∆𝐺

90

Additionally, in Table III, we attempted to reproduce the

synthesis results reported in [12]. However, due to limitations

such as the unavailability of source code and differences in

synthesis environments, we were unable to fully replicate

their results. To provide a meaningful comparison, we

included a simple binary adder as a reference point. Our

analysis indicates that the proposed design consistently

achieves better delay and area metrics compared to prior

works. While the proposed design does not exhibit the lowest

power consumption in 2 out of 8 cases, its superior PDP and

delay demonstrate that it outperforms other designs in overall

efficiency.

TABLE III. SYNTHESIS RESULTS OF DELAY, AREA, AND POWER OF

PROPOSED DESIGN AND THE PRIOR WORKS

Modulo Designs
Delay
𝒑𝒔

Area
𝝁𝒎𝟐

Power
𝝁𝑾

PDP
𝒑𝒔 × 𝝁𝑾

167

Binary 184 236 76 13984

[12] 333 572 236 78588

[31] 335 449 135 45225

[2] 410 417 175 71750

New 231 250 105 24255

757

Binary 217 275 95 20615

[12] 434 651 296 128464

[31] 412 617 189 77868

[2] 416 527 225 93600

New 325 447 197 64025

1777

Binary 201 339 118 23718

[12] 400 778 345 138000

[31] 405 679 218 88290

[2] 518 575 244 126392

New 336 552 217 72912

2579

Binary 250 453 146 36500

[12] 459 857 359 164781

[31] 376 989 287 107912

[2] 467 839 337 157379

New 341 539 238 81158

6173

Binary 217 430 146 31682

[12] 525 982 416 218400

[31] 436 958 300 130800

[2] 516 682 283 146028

New 370 680 274 101380

11353

Binary 265 598 200 53000

[12] 427 1031 451 192577

[31] 428 973 298 127544

[2] 525 785 342 179550

New 310 612 273 84630

27073

Binary 235 668 212 49820

[12] 434 1095 493 213962

[31] 503 888 307 154421

[2] 545 815 342 186390

New 316 677 275 86900

To evaluate the scalability of the proposed design, we

synthesized adders with channel widths ranging from 𝑛 = 4

to 𝑛 = 16. The results, illustrated in Fig. 7, show that the

proposed design outperforms prior works in terms of delay,

area, and power across all tested widths. These results

underscore the design's adaptability and overall advantage in

critical parameters for modular arithmetic operations. By

comparing with the best-performing component from each of

the referenced works, the proposed design achieves average

improvements of 21% in delay, 20% in area, 14% in power

consumption, and 31% in PDP. These investigations

highlight the versatility and efficiency of the proposed design,

establishing it as a robust choice for reconfigurable modular

arithmetic with minimal trade-offs.

(a) Delay

(b) Area

(c) Power

Fig. 7. Synthesis report with different channel bit widths (𝑛) and moduli (𝑚)

As part of our final investigation, we set δ = 1 to

compare our proposed design with the diminished one

modulo-(2𝑛 + 1) adder introduced in [35], widely regarded

as one of the most efficient designs in the field. The code for

this adder is publicly available on https://iis-

people.ee.ethz.ch/~zimmi/. While the results indicate that our

proposed design does not surpass the performance of the

diminished one modulo-(2𝑛 + 1) adder, the differences are

minimal. This demonstrates that our design achieves

competitive performance. It is worth noting that our proposed

design is highly versatile and can operate without restrictions

on δ, a significant advantage over certain generic adders that

fail to support δ = 1 [12].

VI. CONCLUSOIN

This paper presents a novel algorithm for efficient

modular addition in RNS, targeting moduli of the form (2𝑛 +
δ) , where δ is an integer within 0 ≤ 𝛿 ≤ 2𝑛−1 − 1 . By

leveraging a two-valued digit (twit) encoding for ±δ , the

proposed approach achieves significant improvements in

delay, area, and power consumption compared to prior

designs. The introduction of twit-based residue encoding not

only simplifies modular reduction but also eliminates the

need for multiple CPAs and multiplexers typically required

in generic modular adders. The analytical and experimental

results demonstrate the efficacy of the proposed design across

practical 𝑛 (4 ≤ 𝑛 ≤ 16). Synthesis using the FreePDK

45nm process demonstrates that, compared with the best-

performing components from referenced works, the proposed

design achieves average improvements of 21% in delay, 20%

in area, 14% in power consumption, and 31% in PDP.

𝜇𝑊

𝜇𝑚2

𝑝𝑠

91

Additionally, the fault-tolerant capabilities enabled by RMAs

enhance the reliability of RNS processors while reducing

hardware redundancy. By addressing the challenges of

dynamic range and operating frequency, this work

contributes a robust and efficient solution for modular

arithmetic in modern computing systems.

ACKNOWLEDGMENT

This work was partly supported by Institute of

Information & communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government

(MSIT) (No.RS-2023-00228970, Development of Flexible

SW‧HW Conjunctive Solution for On-edge Self-supervised

Learning, 30%), IITP grant funded by the Korea government

(MSIT) (RS-2019-II190421, Artificial Intelligence Graduate

School Program (Sungkyunkwan University), 30%), and the

Technology Innovation Program (or Industrial Strategic

Technology Development Program-Public-Private Joint

Investment Advanced Semiconductor Talent Development

Project) (RS-2023-00237136, Development of CXL/DDR5-

based memory subsystem for AI accelerators, 40%).

REFERENCES

[1] Z. Ahmadpour and G. Jaberipur, “Up to 8k-bit Modular Montgomery
Multiplication in Residue Number Systems with Fast 16-bit Residue
Channels,” IEEE Transactions on Computers, vol. 71, no. 6, pp. 1399-
1410, Jun. 2021.

[2] M. A. Bayoumi, G. A. Jullien, and W. C. Miller, “A VLSI
Implementation of Residue Adders,” IEEE Transactions on Circuits
and Systems, vol. 34, no. 3, pp. 284–8, Mar. 1987.

[3] G. Dimitrakopoulos, D.G. Nikolos, D. Nikolos, H.T. Vergos, and C.
Efstathiou, “New Architectures for Modulo 2𝑛 − 1 Adders,” in
Proceedings of IEEE International Conference on Electronics,
Circuits, and Systems, Sep. 2008.

[4] M. Dugdale, “VLSI Implementation of Residue Adders Based on
Binary Adders,” IEEE Transaction on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 39, pp. 325–329, Mar. 1992.

[5] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Fast Parallel-Prefix
Modulo-(2𝑛 + 1) Adders,” IEEE Transactions on Computers, vol. 53,
no. 9, pp. 1211-1216, Sep. 2004.

[6] H. Fatemi, and G. Jaberipur, “Double {0,1,2} Representation Modulo-
(2𝑛 − 3) Adders,” in Proceedings of 21st International Conference on
Systems, Signals and Image Processing (IWSSIP), pp. 119-122, May
2014.

[7] J. Garland and D. Gregg, “Low Complexity Multiply-Accumulate
Units for Convolutional Neural Networks with Weight-Sharing,” ACM
Transactions on Architecture and Code Optimization., vol. 15, no. 3,
p. 31:1-31:24, Sep. 2018.

[8] T. Gupta and S. Akhter, “Design and Implementation of Area-Power
Efficient Generic Modular Adder using Flagged Prefix Addition
Approach,” in 7th International Conference on Signal Processing and
Communication (ICSC), pp. 302–307, Nov. 2021.

[9] T. Gupta, G. Verma, and S. Akhter, “FPGA Implementation and
Performance Analysis of Parallel Prefix Structures for Modular Adders
Design,” Circuits, Systems, and Signal Processing, Sep. 2024.

[10] A. Hiasat, “High-Speed and Reduced-Area Modular Adder Structures
for RNS,” IEEE Transactions on Computers, vol. 51, no. 1, pp. 84-89,
Jan. 2002.

[11] A. Hiasat, “A Suggestion for a Fast Residue Multiplier for a Family of
Moduli of the form (2𝑛 − (2𝑝 ± 1)),” The Computer Journal, vol. 47,
no. 1, pp. 93–102, Jan. 2004.

[12] A. Hiasat, “General Modular Adder Designs for Residue Number
System Applications,” IET Circuits, Devices & Systems, vol. 12, pp.
424-431, Mar. 2018.

[13] G. Jaberipur, B. Parhami, and M. Ghodsi, “Weighted two-valued digit-
set encodings: unifying efficient hardware representation schemes for
redundant number systems,” in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 52, no. 7, pp. 1348-1357, Jul. 2005.

[14] G. Jaberipur and B. Parhami, “Unified Approach to the Design of
Modulo-(2𝑛 ± 1) Adders Based on Signed-LSB Representation of

Residues,” in Proceedings of 19th IEEE Symposium on Computer
Arithmetic (ARITH), pp. 57-64, 2009.

[15] G. Jaberipur and S. Nejati, “Balanced Minimal Latency RNS Addition
for Moduli Set {2𝑛−1, 2𝑛 , 2𝑛+1},” in Proceedings of 18th International
Conference on Systems, Signals and Image Processing (IWSSIP), pp.
159-165, Jun. 2011.

[16] G. Jaberipur and SM. Cherati, “Modulo- (2𝑛 + 3) Parallel Prefix
Addition via Diminished-3 Representation of Residues,” in
Proceedings of IEEE 26th Symposium on Computer Arithmetic
(ARITH), pp. 135-142, Jun. 2019.

[17] L. Kalamboukas, D. Nikolos, C. Efstathiou, H.T. Vergos, and J.
Kalamatianos, “High-Speed Parallel-Prefix Modulo 2𝑛 − 1 Adders,”
IEEE Transactions on Computers, Vol. 49, No. 7, special issue on
computer arithmetic, pp. 673-680, Jul. 2000.

[18] S. Ma, J. H. Hu, and C. H. Wang, “A Novel Modulo 2𝑛 − 2𝑘 − 1
Adder for Residue Number System,” IEEE Transactions Circuits and
Systems I: Regular Papers, vol. 60, pp. 2962– 2972, May 2013.

[19] P. M. Matutino, H. Pettenghi, and R. Chaves, “RNS Arithmetic Units
for Modulo (2𝑛 ± 𝑘),” in Proceedings of Euromicro Conference on
Digital System Design, pp. 795–802, Sep. 2012.

[20] P. V. A. Mohan, Residue Number Systems. Springer International
Publishing, Oct. 2016.

[21] N. N. Nagornov, P. A. Lyakhov, M. V. Valueva and M. V. Bergerman,
“RNS-Based FPGA Accelerators for High-Quality 3D Medical Image
Wavelet Processing Using Scaled Filter Coefficients,” IEEE Access,
vol. 10, pp. 19215-19231, Feb. 2022.

[22] B. Parhami, “Double-least-significant-bits 2's-complement number
representation scheme with bitwise complementation and symmetric
range,” IET circuits, devices & systems, vol. 2, pp. 179-186, 2008.

[23] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd edition, Oxford University Press, New York, 2010.

[24] R. A. Patel, M. Benaissa, N. Powell, and S. Boussakta, “Novel Power-
Delay-Area-Efficient Approach to Generic Modular Addition,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 54, no.
6, pp. 1279–1292, Jun. 2007.

[25] H. Pettenghi, S. Cotofana, and L. Sousa, “Efficient Method for
Designing Modulo (2𝑛 ± 𝑘) Multipliers,” Journal of Circuits, Systems
and Computers, vol. 23, no. 1, pp. 1–20, 2014.

[26] J. Ramírez, A. García, U. Meyer-Baese, and A. Lloris, “Fast RNS FPL-
based Communications Receiver Design and Implementation,” in
Proceedings of Field-Programmable Logic and Applications:
Reconfigurable Computing Is Going Mainstream, vol. 2438, 2002.

[27] N. Samimi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Res-DNN:
A Residue Number System-Based DNN Accelerator Unit,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no.
2, pp. 658-671, Feb. 2020.

[28] T. F. Tay and C.-H. Chang, “A New Unified Modular Adder/Subtractor
for Arbitrary Moduli,” in IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 53–56, May. 2015.

[29] M. V. Valueva, N. N. Nagornov, P. A. Lyakhov, G. V. Valuev, and N.
I. Chervyakov, “Application of the Residue Number System to Reduce
Hardware Costs of the Convolutional Neural Network
Implementation,” Mathematics and Computers in Simulation, vol. 177,
pp. 232–243, Nov. 2020.

[30] H.T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One
Modulo-(2𝑛 + 1) Adder Design,” IEEE Transactions on Computers,
vol. 51, no. 12, pp. 1389-1399, Dec. 2002.

[31] H. T. Vergos, “On the Design of Efficient Modular Adders,” Journal
of Circuits, Systems and Computers, vol. 14, no. 5, pp. 965–972, Oct.
2005.

[32] H. T. Vergos, “Fast Modulo 2𝑛 + 1 Adder Architectures,” in
Proceedings of 22nd Conference on Design on Circuits and Integrated
Systems, pp. 476–481, 2007.

[33] E. Vassalos, D. Bakalis, and H. T. Vergos, “On the Design of Modulo
2𝑛 ± 1 Subtractors and Adders/Subtractors,” Circuits, Systems and
Signal Processing, vol. 30, pp. 1445–1461, Dec. 2011.

[34] H. T. Vergos and G. Dimitrakopoulos, “On Modulo 2𝑛 + 1 Adder
Design,” IEEE Transactions on Computers, vol. 61, no. 2, pp. 173-186,
Feb. 2012.

[35] R. Zimmermann, “Efficient VLSI Implementation of Modulo 2𝑛 + 1
Addition and Multiplication,” in Proceedings of 14th IEEE Symposium
on Computer Arithmetic (ARITH), pp. 158-167, Apr. 1999.

92

