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Abstract—Modular adders are essential arithmetic 

components in Residue Number System (RNS)-based 

applications, including digital signal processing, cryptography, 

and machine learning. These applications consistently push the 

boundaries of dynamic range (DR) and operating frequency, 

making the design of efficient generic modular adders a critical 

and evolving challenge. This paper presents a novel algorithm 

for modulo-(𝟐𝒏 ± 𝛅) addition, where 𝛅 is an integer within the 

range          𝟎 ≤ 𝜹 ≤ 𝟐𝒏−𝟏 − 𝟏. The proposed approach leverages 

a two-valued digit (twit) for encoding the value of ±𝛅 and uses a 

faithful representation of operands. In this representation, each 

operand is encoded as an 𝒏-bit unsigned number augmented by 

a twit value {𝟎,±𝛅} . The algorithm efficiently performs 

modular addition by speculating and adjusting the twit value in 

the addition result. When the result exceeds the modulus, it 

subtracts 𝟐𝒏 ± 𝛅 by ignoring the carry-out and adjusting the 

speculated twit value. This adjustment is achieved through an 

XOR operation between the carry-out and the speculated twit 

value, simplifying the modular reduction process. The proposed 

design has been synthesized for practical 𝒏 (𝟒 ≤ 𝒏 ≤ 𝟏𝟔) using 

a FreePDK 45 nm process. The results demonstrate superior 

performance across key metrics such as delay, area, and power 

consumption compared to previous designs, highlighting the 

efficacy and scalability of the approach.  

 
Keywords—Residue Number System (RNS), Modular 

addition, Generic adder, Two-Valued Digit (Twit). 
 

I. INTRODUCTION 

The RNS is one of the most well-known unconventional 
number representations, attracting significant interest in 
fields such as communications [26], cryptography [1], neural 
networks [27], and digital signal/image processing [21]. 
These applications demand high-performance, low-power 
arithmetic circuits. RNS achieves its advantages through a 
high level of parallelism and reduced carry propagation, 
making it particularly attractive for addition- and 
multiplication-intensive workloads (e.g., convolution 
operations [29]). Thus, the efficiency of modular addition is 
critical for applications relying on RNS, as modular 
multipliers essentially perform successive modular additions 
[20], [11], [25]. 

Extensive research has focused on optimizing modular 

addition for specific moduli, such as 2𝑛 ± 1, to balance delay 

within the classical moduli set τ = {2𝑛, 2𝑛 ± 1} [35], [30], 

[32], [34], [3], [5], [33], [14], [15], [29]. More recently, 

innovative designs have been proposed for moduli, such as 

(2𝑛 ± 3)  [6], [16] and (2𝑛 − 2𝑘 − 1)  [18]. These designs 

aim to increase the number of co-prime moduli for greater 

dynamic range or to enable higher operating frequencies by 

reducing channel width. However, these approaches are not 

sufficient to meet the growing demand for higher 

performance and greater dynamic range. 

A promising response to this challenge is the development 

of efficient generic modulo adders that can handle any 

required co-prime modulus. While previous works have 

proposed generic designs, such as [2] and [12], these efforts 

are relatively modest compared to the extensive 

optimizations designed for 2𝑛 ± 1  adders. These designs 

typically rely on computing the sum of two operands and 

applying a reduction step when the sum exceeds the modulus, 

requiring at least two Carry-Propagate Adders (CPAs) and a 

multiplexer to select the correct result. 

In this paper, we present a new efficient generic modulo-

(2𝑛 ± δ)  addition algorithm, where δ  is an integer in the 

range 0 ≤ δ ≤ 2𝑛−1 − 1. The proposed design introduces a 

novel representation where the ±δ bias is encoded as a twit 

value {0, ±δ} . In this encoding, all codewords are valid, 

allowing redundant representations. The algorithm avoids 

needing two CPAs and a multiplexer by speculating the twit 

value with a simple 4-input combinational logic block. This 

block takes, as inputs, the most significant bit and twit values 

of each operand. Additionally, it generates a compensating 

value to ensure the sum of the speculated twit and 

compensating value aligns with the weighted sum of the 

block inputs. The final result is computed by summing the 

compensating value with the remaining operand bits. This 

summation can occasionally produce a carry-out when the 

speculated twit value equals one. In such cases, the twit value 

is corrected to zero (i.e., reducing ∓δ) by XORing the carry-

out with the speculated twit value, ensuring the final result's 

correctness while maintaining the design's efficiency. 

We evaluate the proposed design using both analytical 

and experimental methods. Analytical evaluation highlights 

the algorithm's superiority over prior designs. Synthesis 

results, performed using Synopsys Design Compiler with the 

FreePDK 45nm technology library, confirm the analytical 

findings. The results demonstrate improvements in delay, 

area, and power consumption. This paper makes the 

following contributions: 

• Introduces an efficient use of the twit representation for 

residue encoding in modulo-(2𝑛 ± δ). 
• Proposes a generic modulo- (2𝑛 ± δ)  addition 

algorithm. 

• Achieves low-cost subtraction equivalent to 

conventional binary representations. 

• Provides comprehensive analysis and comparison of the 

proposed design against related works. 

• Demonstrates fault tolerance using Reconfigurable 

Modular Adders (RMAs) for fault-tolerant RNS 

processors. 
 

The remainder of this paper is structured as follows. 

Section II provides an overview of RNS, generic modulo-

(2𝑞 ± δ)  addition, and weighted bit set encoding with twit 

representation. Section III reviews related works. Section IV 

details the proposed generic modulo addition algorithm. 

Section V presents evaluations and comparisons with prior 

designs. Finally, Section VI concludes the paper. 
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Availability: To promote reproducibility, transparency, and 

further advancements in the field, the HDL codes developed 

during this study have been made publicly available at  

https://github.com/GorginSaeid/Generic-Modulo-Adder. 

II. BACKGROUND 

A. Residue Number System (RNS) 

The RNS encoding is an alternative integer representation 

in which a number 𝑋 ∈ [0,𝑀)  is represented as 𝑋𝑅𝑁𝑆 =

(𝑥1, … , 𝑥𝑘), where for 1 ≤ 𝑖 ≤ 𝑘, 𝑥𝑖 = |𝑋|𝑚𝑖 ∈ [0,𝑚𝑖) (i.e., 

the remainder of integer division 𝑋/𝑚𝑖 , read as 𝑋  modulo 

𝑚𝑖). The dynamic range (DR) is given by 𝑀 = 𝑚1 ×𝑚2 ×
…𝑚𝑘 , assuming that the moduli {𝑚1, … ,𝑚𝑘} are mutually 

prime, which is commonly the case [20].  

RNS representation enables parallel computation across 

different residues, while the long carry chains in doing 

arithmetic on conventional binary numbers 𝑋, 𝑌 ∈ [0,𝑀), are 

broken into small bit-widths of the 𝑘  parallel residue 

channels (one per each modulo 𝑚𝑖). The arithmetic operation 

(typically addition or multiplication) is performed on the 

corresponding residues 𝑥𝑖 and 𝑦𝑖  which are generated via the 

forward binary-to-modulo- 𝑚𝑖  conversion for 1 ≤ 𝑖 ≤ 𝑘 .  

The results of a series of RNS operations (e.g., in convolution 

[7]) are then subject to reverse conversion back to binary via 

the Chinese Remainder Theorem (CRT). 

B. Generic Modulo Addition Algorithm 

A generic modulo addition algorithm computes the result 

of |𝐴 +  𝐵|𝑚 = (𝐴 +  𝐵) 𝑚𝑜𝑑 𝑚, where 𝑚 is of the form 

2𝑛 ± δ, and 𝐴 and 𝐵 are remainders from division by 𝑚 (i.e., 

𝐴, 𝐵 < 𝑚). Unlike specific modulo operations that exploit 

predefined structures of the modulus, such as 2𝑛 ± 1 or 2𝑛 ±
3, generic algorithms must accommodate a wider range of 

modulus values. This flexibility introduces additional 

complexity, particularly in managing carries and performing 

reduction steps, which are inherently more challenging in 

generic designs. The general modulo addition operation is 

mathematically expressed in Equation (1), adhering to the 

conventional definition: 

|𝐴 + 𝐵|𝑚 = {
𝐴 + 𝐵,          if 𝐴 + 𝐵 < 𝑚
𝐴 + 𝐵 −𝑚 , if 𝐴 + 𝐵 ≥ 𝑚 

    (1) 

The direct implementation of Equation (1) is illustrated in 

Fig. 1(a) [2]. To avoid the computationally expensive 

propagation of two 𝑛-bit CPA on critical path delay, both 

𝐴 + 𝐵  and 𝐴 + 𝐵 −𝑚  can be computed simultaneously in 

two parallel paths. In the path handling 𝐴 + 𝐵 −𝑚, a Carry-

Save Adder (CSA) is utilized to sum 𝐴 , 𝐵 , and two’s 

complement of 𝑚, before the final 𝑛-bit carry propagation 

[31]. The correct result is then selected between the two 

parallel computations based on the carry-out of the speculated 

sum, as demonstrated in Fig. 1(b). This approach reduces 

latency and improves the overall efficiency of the generic 

modulo adder. 

Generic modulo adders play a critical role in increasing the 

dynamic range and reducing the bit-width of data channels, 

enabling higher operating frequencies in digital systems. 

However, designing such components is inherently complex 

due to the need to support a wide range of modulus values 

and the associated challenges of end-around carry handling. 

The most significant advancements in this area will be 

reviewed in Section III-B. 

 
(a) Sequential implementation [2]       (b) Parallel implementation [31] 

Fig. 1. Abstract view of generic Modulo-𝑚 addition  

C. Two-Valued Digit 

Similar to a binary digit, or bit, which can take on two 

values, 0  or 1 , a two-valued digit represents two distinct 

values, denoted as α and β [23]. In this work, the two-valued 

digit is specifically employed to encode the values ±𝛿  as 

{0, ± 𝛿} . This encoding reduces storage requirements and 

simplifies the arithmetic operations required in the proposed 

modular reduction algorithm.  

The foundation of this approach lies in the Weighted Bit-

Set (WBS) encoding framework, which generalizes 

conventional binary representation schemes [13]. WBS 

encoding represents digits as weighted bit-sets, enabling 

efficient arithmetic operations such as addition, subtraction, 

and carry handling. The two-valued digit, referred to as a 

“twit”, extends this concept by introducing a gap-based 

representation that preserves redundancy benefits while 

minimizing hardware overhead. 

A twit is formally defined as a binary variable capable of 

representing two integer values, determined by a lower value 

𝐿 and a gap 𝐺. Formally, a twit represents the set {𝐿, 𝐿 +  𝐺}.  
In this work, we define 𝐿 =  0 and 𝐺 =  ±𝛿, leading to the 

digit set {0, ± δ} . This representation is compact and 

efficient, eliminating the need for additional bits while 

maintaining compatibility with VLSI implementations [13]. 

III. PRIOR WORKS 

A. Specific Modulo Adders 

As previously mentioned, extensive research has focused 

on the development of modulo-(2𝑛 ± 1) adders. Alongside 

these designs, several proposals address specific moduli, such 

as (2𝑛 ± 3), employing innovative techniques that leverage 

predictable carry patterns. These designs often achieve 

optimized latency and area efficiency through specialized 

hardware architectures, including parallel-prefix and carry-

select adder mechanisms. 

For example, efficient VLSI implementations for 

modulo- (2𝑛 − 1)  adders have been proposed, optimizing 

both area and delay [35]. Parallel-prefix adders that eliminate 

the end-around carry for modulo-(2𝑛 − 1) addition have also 

been introduced, significantly minimizing delay [17]. 

Enhanced diminished-one adders for modulo- (2𝑛 + 1) 
arithmetic have been developed, focusing on simplified carry 

recirculation [30], while fast modulo-(2𝑛 + 1)  adders based 

on parallel-prefix architectures have been proposed [32]. 

Ling-carry and sparse-prefix architectures have been utilized 

to improve area and delay trade-offs in large modulo-(2𝑛 −
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1)  designs [3]. Extensions to these methods introduced 

parallel-prefix architectures for modulo-(2𝑛 + 1) arithmetic 

[5]. Other contributions include sparse carry computation 

methods for modulo- (2𝑛 ± 1)  designs [34], efficient 

adder/subtractor designs [33], and signed-LSB residue 

approaches for modular arithmetic [14]. 

A double {0, 1, 2}  representation for modulo- (2𝑛 − 3) 
adders have been proposed to reduce carry propagation delay 

for small moduli [6]. Further advancements include the 

Diminished-3 representation for modulo-(2𝑛 + 3)  , which 

optimizes performance using balanced parallel-prefix 

techniques [16]. Additionally, flexible modular adders for 

2𝑛 − 2𝑘 − 1  have been developed using carry-correction 

techniques to improve speed and efficiency [18].  

B. Generic Modulo Adders 

One of the earliest generic modular adder architectures 

was proposed in [2], utilizing simple binary adders and 

multiplexers. Later, a generic residue adder using one binary 

adder and a feedback register was introduced in [4]. In [10], 

hybrid adders for 2𝑛 ± δ   moduli were proposed, merging 

carry-propagate and carry-save structures. This approach was 

further refined in [31] to improve delay characteristics.  

A power-efficient CPA-based design combining Kogge-

Stone and Ladner-Fischer adders to reduce overhead and 

achieve near-optimal delay was presented in [24]. Parallel-

prefix architectures suitable for residue number systems were 

investigated in [19], achieving a balance between hardware 

complexity and performance. A unified modular 

adder/subtractor with improved speed, area, and power 

metrics was developed in [28]. In [12], general 2𝑛 ± δ 

architectures leveraging tristate-based multiplexers were 

introduced, achieving marginal improvements. Finally, a 

flagged-prefix addition method focusing on reduced power 

and area for arbitrary moduli was proposed in [8]. 

Furthermore, some studies, such as [9], have explored generic 

adders implemented on FPGA platforms. However, these 

designs heavily rely on FPGA-specific architectural features 

and are not discussed in this paper. 

IV. GENERIC MODULO-(2𝑛 ± 𝛅) OPERATIONS 

This section provides a detailed explanation of the 

proposed algorithm. We begin by introducing the operand 

encoding method, focusing on the use of twit encoding in 

order to represent operands in the modulo (2𝑛 ± δ). Next, the 

addition algorithm is described in detail, accompanied by 

numerical examples to illustrate the process. Following this, 

we discuss the negation process within the proposed format 

and extend the discussion to the subtraction operation. 

Finally, we outline our approach for designing reconfigurable 

adders that support various moduli based on 

                   
modulo-(2𝑛 ± δ) adders. This design lays the groundwork 

for a fault-tolerant RNS processor, enabling more robust and 

flexible computation. 

A. Operand Representation 

The proposed representation encodes each operand as an 

𝑛-bit unsigned integer, augmented by a twit value {0, ±δ}, 
and stores it in memory as an (𝑛 + 1)-bit number, represented 

as 𝑎𝑛−1𝑎𝑛−2…𝑎2𝑎1(𝑎0δ𝑎) . This approach is conceptually 

similar to the double least significant bit (LSB) representation 

[22] in terms of memory usage, but instead of using an extra 

bit in the LSB position, it employs a twit. It simplifies 

hardware implementation while maintaining compatibility 

across different values of ±δ. All codewords are valid within 

this representation. For negative values of δ  (−δ ), every 

representable value in modulo-(2𝑛 − δ) has more than one 

equivalent form, where representations with a negative value 

or greater than the modulus are also considered after a 

modulo operation. However, for positive values of δ (+δ) 

(i.e., modulo-(2𝑛 + δ )), only certain values possess dual 

representations. 

The mathematical properties of two-valued digit make 

this representation particularly beneficial for modular 

arithmetic. Using this format, modular operations are 

streamlined by efficiently handling the end-around carry of 

±δ . This simplifies the result adjustment, allowing the 

desired final value to be computed with lower computational 

overhead. 

Although a remainder from a modulus 2𝑛 − δ  can be 

represented using only 𝑛 -bit, the proposed ( 𝑛 + 1 )-bit 

representation (including the twit) offers significant 

advantages. The extra bit enables a unified representation for 

both 2𝑛 − δ and 2𝑛 + δ, facilitating a generic modulo-(2𝑛 ±
δ) system. This unified framework enhances versatility and 

provides computational fault tolerance, as will be further 

detailed in Section IV-D. 

Example 1: Consider 𝑛 = 5 and δ = 7. 

• For modulo-(25 − 7), the value 15 can be represented as 
0111 (1𝟎) (using δ𝑎 = 𝟎) or 1011 (0𝟏) (using δ𝑎 = 𝟏). 
In the first representation, where δ𝑎 = 0 , 0111 (1𝟎)  
corresponds directly to 15 , as (01111)2 = 15 . In the 
second representation, where 𝛿𝑎 = 1 , 1011 (0𝟏) 
corresponds to 15  because (10110)2 = 22 , and 22 −
7 = 15. 

• For modulo-(25 + 7) , the value 15 can be represented as 
to 0111 (1𝟎)  or  0100 (0𝟏) . Similarly, in the first 
representation (δ𝑎 = 𝟎), 0111 (1𝟎)  corresponds directly 
to 15 .  In the second representation, where δ𝑎 = 𝟏 , 
0100 (0𝟏)  corresponds to 15  because (01000)2 = 8 , 
and 8 + 7 = 15. 

B. Addition Algorithm 

Besides utilizing parallel paths to enhance the 

performance of the addition algorithm, Equation (1) can be 

reformulated as Equation (2) to simplify the comparison 

between 𝐴 + 𝐵 and 𝑚. Given 𝑚 = 2𝑛 ± δ, the comparison 

reduces to checking the carry-out of 𝐴 + 𝐵 + θ, where θ = δ 

and �̂� = 𝑛  for modulo-(2𝑛 − δ). While for modulo-(2𝑛 +
δ), θ is the two’s complement of δ and �̂� = 𝑛 + 1.  

|𝐴 + 𝐵|2𝑛±δ = {
|𝐴 + 𝐵|2�̂� ,         if 𝐴 + 𝐵 + θ < 2�̂� 

|𝐴 + 𝐵 + θ|2�̂� ,  if 𝐴 + 𝐵 + θ ≥ 2�̂�  
(2) 

Unlike this conventional approach, the proposed addition 

algorithm takes a different route, relying on speculating the 

twit value in the result. Algorithm 1 describes the process in 

detail. By examining the most significant bits (i.e., 𝑎𝑛−1 and 

𝑏𝑛−1 ) and the twit of two operands (i.e., δ𝑎  and δ𝑏 ), the 

algorithm speculates a twit value (i.e., δ𝜀)  and computes a 

compensating value (i.e., 𝑍). After summing the lower bits of 

the two operands along with 𝑍, the result includes an 𝑛-bit  

sum (i.e., 𝑠𝑛−1𝑠𝑛−2…𝑠1𝑠0) and a carry-out value (i.e., 𝐶𝑜𝑢𝑡). 
The carry-out is then used to apply an end-around carry with 

a value of −δ for modulo-(2𝑛 + δ)  or +δ for modulo-(2𝑛 −
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δ). Since the speculated twit value δ𝜀  already incorporates 

the adjustment for ±δ, the end-around carry is performed by 

zeroing the final twit (δ𝑠) using an XOR operation with δ𝜀. 
Notably, when the twit value is zero, the carry-out will also 

be zero. 

Algorithm 1: Modulo-(2𝑛 ± δ) Addition (δ < 2𝑛−1) 

Inputs: 𝐴 = 𝑎𝑛−1𝑎𝑛−2…𝑎2𝑎1(𝑎0δ𝑎), 
             𝐵 = 𝑏𝑛−1𝑏𝑛−2…𝑏2𝑏1(𝑏0δ𝑏).  
Output: 𝑆 = 𝑠𝑛−1𝑠𝑛−2…𝑠2𝑠1(𝑠0δ𝑠).  
Intermediate variable: 𝑍 =  𝑧𝑛−1𝑧𝑛−2…𝑧1𝑧0, δ𝜀 
Compute intermediate 𝑍, and speculated twit δ𝜀: 

  𝑍 = |(𝑎𝑛−1 + 𝑏𝑛−1)2
𝑛−1 + δ𝑎 + δ𝑏|2𝑛±𝛿⏟                      
𝑉

− δ𝜀,  

where δ𝜀 = {
0, 𝑉 = 0
1, 𝑉 > 0

 

Compute sum and carry-out: 

𝐶𝑜𝑢𝑡𝑠𝑛−1𝑠𝑛−2…𝑠1𝑠0 = 
𝑎𝑛−2…𝑎1𝑎0 + 𝑏𝑛−2…𝑏1𝑏0 + 𝑧𝑛−1𝑧𝑛−2…𝑧1𝑧0 

Final twit adjustment: 

δ𝑠 = 𝐶𝑜𝑢𝑡  ⨁ δ𝜀. 
 

The hardware implementation of this algorithm is 

illustrated symbolically in Fig. 2. The process begins with the 

computation of 𝑍 (step ) and continues with a CSA in step 

. Notably, the computation of 𝑎𝑖⨁𝑏𝑖  can be performed 

simultaneously with the corresponding logic to compute 𝑍. 

The second part of step  uses a CPA to sum the intermediate 

results, Σ = 𝜎𝑛−1 𝜎𝑛−2 … 𝜎2𝜎1𝜎0  (where 𝜎𝑛−1 = 𝑧𝑛−1 ) and 

Φ = 𝜑𝑛−1… 𝜑2𝜑10. The carry out from the CPA is then 

used in step  to finalize the twit value δ𝑠. The CPA can 

employ various carry acceleration techniques, such as the 

Kogge-Stone parallel-prefix tree, to achieve a trade-off 

between performance and hardware cost. 
 

Theorem 1: Behavior of Carry-Out When 𝛅𝜺 = 𝟎  

Statement: In Algorithm 1, if δ𝜀 = 0 , then 𝐶𝑜𝑢𝑡 = 0. 

Proof: From Algorithm 1, when δ𝜀 = 0, the value of 𝑍 = 0. 

Since the lower 𝑛 − 1 bits of 𝐴 and 𝐵 (i.e., 𝑎𝑛−2…𝑎1𝑎0 and 

𝑏𝑛−2…𝑏1𝑏0) are both less than 2𝑛−1, their sum will also be 

less than 2𝑛. Therefore, the carry-out (𝐶𝑜𝑢𝑡) cannot be 1.■ 

 
Fig. 2. Hardware realization of Algorithm 1 in symbolic representation 

(𝜎𝑖 = 𝑎𝑖⨁𝑏𝑖⨁𝑧𝑖 and 𝜑𝑖+1 = 𝑎𝑖𝑏𝑖 ∨ 𝑎𝑖𝑧𝑖 ∨ 𝑏𝑖𝑧𝑖) 

The final two parts of Algorithm 1 ( and ) are 

straightforward, as they involve computing the sum and 

adjusting the twit value. So, we provide further clarification 

for step , where the intermediate variable 𝑉  and the 

compensating value 𝑍 are calculated. Since the behavior of 

𝑉 = |(𝑎𝑛−1 + 𝑏𝑛−1)2
𝑛−1 + δ𝑎 + δ𝑏|2𝑛±δ  depends on 

whether the modulo operation is (2𝑛 + δ) or (2𝑛 − δ), we 

explain each case separately. 

• For modulo-(2𝑛 + δ): 
Here, 𝑉 can take the values: 

{0, δ, 2δ, 2𝑛−1, 2𝑛−1 + δ, 2𝑛−1 + 2δ, 2𝑛}. 
▪ When 𝑉 = 0 the speculated twit value δ𝜀 is zero, and 

𝑍 = 0.  

▪ When 𝑉 ≠ 0, δ𝜀 = 1, and 𝑍 takes the values: 

{0, δ, 2𝑛−1 − δ, 2𝑛−1, 2𝑛−1 + δ, 2𝑛 − δ}. 
In its 𝑛-bit form, 𝑍 can be expressed as: 

{00…00, 0δ𝑛−2… δ1δ0, 0δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1, 
10…00, 1δ𝑛−2… δ1δ0, 1δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1}. 

• For modulo-(2𝑛 − δ): 
Here, 𝑉 can take the values: 

{0, δ, 2𝑛−1 − 2δ, 2𝑛−1 − δ, 2𝑛 − 3δ, 
2𝑛 − 2δ, 2𝑛−1} . 

▪ When 𝑉 = 0, δ𝜀 = 0, and 𝑍 = 0. 

▪ When 𝑉 ≠ 0, δ𝜀 = 1, and 𝑍 takes the values: 

{0, 2𝛿, 2𝑛−1 − 𝛿, 2𝑛−1, 2𝑛−1 + 𝛿, 2𝑛 − 2𝛿}. 
In its 𝑛-bit form, 𝑍 can be expressed as: 

{00…00, δ𝑛−2… δ1δ00, 0δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 1,
10… 00, 1δ𝑛−2… δ1δ0, δ𝑛−2̅̅ ̅̅ ̅̅ … δ1̅̅̅ δ0̅̅ ̅ + 2}. 

 

 

Example 2: Consider 𝑛 = 5 and δ = 7. 

Modulo-(25 + 7) 

𝐴 = 14 and 𝐵 = 19 

Modulo-(25 − 7) 
𝐴 = 23 and 𝐵 = 10 

 
δ𝜀 = 1, and 𝐶𝑜𝑢𝑡 = 0 

 
δ𝜀 = 1, and 𝐶𝑜𝑢𝑡 = 1 

𝑆 = |14 + 19|39 = 33 𝑆 = |23 + 10|25 = 8 

C. Subtraction Algorithm 

The subtraction algorithm in the proposed number 

representation follows a similar procedure to conventional 

binary arithmetic, where subtraction is performed by adding 

the two’s complement of the subtrahend. In this 

representation, the complement of the subtrahend is obtained 

the same as the two’s complement procedure, by inverting all 

its bits and adding 1 to the least significant bit position. 

Thus, to compute  |𝐴 − 𝐵|2𝑛±δ , we can equivalently 

compute |𝐴 + �̅� + 1|2𝑛±δ. Here, 2𝑛 can be written as an 𝑛-

bit number with all bits set to 1, plus 1 (i.e., 1…11 + 1). 

Also, the subtrahend 𝐵  consists of the 𝑛 -bit value 

𝑏𝑛−1𝑏𝑛−2…𝑏2𝑏1𝑏0  along with a twit δ𝑏 . The twit δ𝑏 

evaluates to 0 when not set and ±δ  when δ𝑏 = 1. So, for 

2𝑛 ± δ − 𝐵 (equivalent to −𝐵), the operation involves: 

�̅� + 1 = 𝑏𝑛−1̅̅ ̅̅ ̅̅  𝑏𝑛−2̅̅ ̅̅ ̅̅ … 𝑏2̅̅ ̅ 𝑏1̅ 𝑏0̅̅ ̅ δ𝑏̅̅ ̅ + 1. 

While for adding the +1, the position 𝜑0 (shaded in red 

in Fig. 2) must be updated to reflect the subtraction signal 

(Sub.), where 𝜑0  is 0  for addition and set to “Sub.” for 

subtraction. Consequently, the subtraction cost in this 

representation matches that of conventional binary 

subtraction, requiring only one XOR gate compared to 

addition. The corresponding circuit for combined addition 

and subtraction, which accounts for this XOR gate overhead, 

is illustrated in Fig. 3.  
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Fig. 3. Combined Addition/Subtraction circuit. 

To clarify the functionality of the subtraction algorithm, 

we provide examples for 𝑛 = 5, 𝛿 = +7, where both 𝐴 − 𝐵 

and 𝐵 − 𝐴 are computed. These examples demonstrate that 

the subtraction algorithm maintains consistency and 

efficiency, with the additional cost of a single XOR gate for 

computing the complement of the subtrahend. 

Example 3: 𝐴 = 24 and 𝐵 = 19, for Modulo-25 + 7: 

  
𝑆 = |24 − 19|39 = 5 𝑆 = |19 − 24|39 = 34 

D. Toward a Fault-Tolerant RNS Processor 

The unified design strategy for modulo-(2𝑛 ± δ) adders 

enables the synthesis of RMAs that can process inputs for 

multiple moduli based on configuration signals provided by 

control circuitry (i.e., δ ) [14]. This reconfigurability 

facilitates fault-tolerant designs with significantly reduced 

hardware redundancy compared to conventional full-

replication approaches. 

As shown in Fig. 4, for a system with 𝐾 moduli, instead 

of implementing 𝐾 dedicated adders, the design requires 𝐾 +
Ω   RMAs, where Ω  represents the number of spare units 

(Gray shaded in Fig. 4). These spare adders remain idle 

during normal operation and are activated when a fault is 

detected in one of the operational adders. The shift-switch 

logic seamlessly replaces the faulty adder with one of the Ω 

spare RMAs with the corresponding configuration, ensuring 

continuous operation with minimal disruption. 

While this fault-tolerant strategy introduces a latency 

penalty during reconfiguration, the benefits of reduced 

hardware overhead and increased fault resilience make it a 

highly cost-effective solution. This approach is particularly 

advantageous for reliable RNS processors in applications 

where fault tolerance and efficiency are critical, such as 

safety-critical systems. 

 

Fig. 4. Abstract view of a Fault-tolerant K-moduli RNS processor via 

reconfigurable modulo-(2𝑛 ± δ(𝑖)) adder (adopted form [14]) 

V. PERFORMANCE EVALUATION AND COMPARISONS 

A. Methodology 

We implemented our proposed design along with three of 

the most prominent prior works for comparison. These 

include the first generic modulo adder design by [2], the main 

improvement achieved through parallelization by [31], and 

one of the best-optimized designs presented in [12]. 

Additionally, we included a simple binary adder as a baseline 

for comparison. All designs are implemented using HDL and 

verified with extensive random test vectors, as well as 

manually generated vectors for corner cases. 

For evaluation, we utilized both analytical estimations to 

obtain a rough understanding of each design's performance 

and synthesis results for a more detailed examination of 

delay, area, and power consumption. The HDL 

implementations are synthesized using Synopsys Design 

Compiler with the FreePDK 45 nm technology under 

identical conditions to ensure a fair comparison. Following 

synthesis, we perform comprehensive post-synthesis 

verification to validate the correctness of the synthesis 

process. 

B. Analytical Evaluation 

Table I presents various designs' delays and hardware 

costs, analyzed based on fundamental components such as the 

CSA, carry generation tree, XOR gate, multiplexer, and other 

combinational logic. The delay and area metrics are 

expressed in terms of ∆𝐺 (i.e., the delay of a simple 2-input 

gate) and #𝐺 (i.e., the number of 2-input gates), respectively. 

For delay analysis, XOR gates and multiplexers incur a delay 

of 2 ∆𝐺, CSA have a delay of 4 ∆𝐺, Carry generation trees 

(CGTs) are modeled with a delay of (1 + 2⌈log2 𝑛⌉)∆𝐺 , 

where 𝑛 is the bit-width. While for area Analysis, XOR gates 

and multiplexers require 3𝑛 #𝐺, CSA have a hardware cost 

of 9𝑛 #𝐺 , and CGTs have a hardware cost of (3 +
3𝑛⌈log2 𝑛⌉ − 3𝑛) #𝐺. 

Critical Path Delay (CPD) components are highlighted in 

bold in Table I. For example, in the design by [31], two adders 

(each implemented as a carry generation tree and an XOR 

gate) are used, but only one adder contributes to the CPD. In 

[12], multiplexers are implemented with three-state buffers. 

As an exception, their delay is considered 1∆𝐺, denoted as 

𝟏∗  in the table. For 𝑛-input combinational logic (CL), the 

delay is typically ⌈log2 𝑛⌉∆𝐺 with a hardware cost of 𝑛 #𝐺. 

In our proposed design, we utilize four 4-input combinational 

logic blocks, resulting in a combinational delay of 2∆𝐺 and a 

hardware cost of 4#𝐺 . However, this combinational logic 

does not affect the CPD of the design, as it operates in parallel 

with the first XOR gate of the CSA. 
 

TABLE I. ANALYTICAL EVALUATION BASED ON BASIC COMPONENTS IN 

TERMS OF DELAY (∆𝐺) AND HARDWARE COST (#𝐺) 

Designs 

𝒏-bit components 

CL 
Delay 

∆𝑮 

Cost 

#𝑮 
C 

S 

A 

C 

G 

T 

X 

O 

R 

M 

U 

X 

Binary 0 1 1 0 0 
3 + 
2⌈log2 𝑛⌉ 

3
+ 3𝑛⌈log2 𝑛⌉ 

[2] 0 1+1 1+1 1 0 
8 + 
4⌈log2 𝑛⌉ 

6 + 7𝑛 + 
6𝑛⌈log2 𝑛⌉ 

[31] 𝟏 1+1 1+1 1 0 
9 + 
2⌈log2 𝑛⌉ 

6 + 16𝑛 + 
6𝑛⌈log2 𝑛⌉ 

[12] 𝟏 1+1 𝟏 1*+1* 0 
8 + 
2⌈log2 𝑛⌉ 

6 + 19𝑛 + 
6𝑛⌈log2 𝑛⌉ 

New 1 1 𝟏 0 1 
7 + 
2⌈log2 𝑛⌉ 

3 + 13𝑛 + 
3𝑛⌈log2 𝑛⌉ 
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Based on the two rightmost columns of Table I, we 

present Fig. 5, which illustrates the delays and hardware costs 

of the aforementioned designs in terms of ∆𝐺 and #𝐺, while 

varying 𝑛 from 4-bit to 16-bit. As expected, the simple binary 

design outperforms all others in both parameters. However, 

the proposed design demonstrates lower delay and hardware 

cost compared to the best prior works, [12] and [2], 

respectively. It is important to emphasize that this analytical 

estimation provides only a rough approximation of each 

design's performance. The actual results may differ when 

considering critical factors in real-world implementations or 

more detailed simulations, such as fan-in, fan-out, the number 

of metal tracks, and other physical design constraints. 

 

 
(a) delay (∆𝐺) 

 
(b) hardware cost (#𝐺) 

Fig. 5. Analytical evaluation of different designs for 𝑛 (4 ≤ 𝑛 ≤ 16)  

C. Performance in other RNS operations 

In modular arithmetic, as in conventional binary 

arithmetic, addition and subtraction serve as the foundational 

operations for nearly all computations. These operations are 

critical for enabling higher-level functions such as modular 

multiplication, multiply-and-accumulate (MAC) operations, 

and forward and reverse conversions. Their significance is 

especially pronounced in scenarios involving sequential 

implementations, where efficient execution directly 

influences overall performance [23]. 

For example, in an 𝑛-bit multiplication, 𝑛 − 1 addition 

operations are required, with MAC operations introducing 

one additional accumulation step. Consequently, the 

proposed design is expected to achieve an improvement of 

approximately (𝑛 − 1)∆𝐺  for multiplication and 𝑛 ∆𝐺  for 

MAC operations. 

Forward conversion operations, which manage 𝑚 × 𝑛-bit 

numbers, highlight the importance of efficient modular 

addition and subtraction even further. These conversions 

typically involve 𝑚 − 1  modular multiplications with 

constant coefficients of δ  and 𝑚 − 1  addition/subtraction 

operations. So, any improvement in modular addition or 

subtraction has a direct and significant impact on the 

efficiency of these forward conversions. In reverse 

converters, while modular addition plays a role in 

computations, its relative importance is diminished compared 

to other dominating operations. 

Although, these estimations are based on the analytical 

improvements for suggested designs which are supported by 

synthesis outcomes (See Section V-D), however, for a 

comprehensive evaluation it is essential to implement and 

synthesize corresponding circuits. 

D. Synthesis Results 

The synthesis results of selected modulo-(2𝑛 + δ) adders 

for two different channel widths (i.e., 𝑛, δ = 8, 11 and  

16, 63 ) are summarized in Table II. For comparison, we 

include the synthesis results of a simple binary adder as a 

baseline. According to Table II, the proposed design 

demonstrates varying degrees of improvement depending on 

the channel width. For 𝑛 = 8, the proposed design achieves 

a 12% speedup and a 18% area reduction, while for 𝑛 = 16, 

the improvements are 5% in speed and 17% in area compared 

to the best existing designs. 

In terms of power consumption, the proposed design 

consumes more power than [31] for 𝑛 = 8, whereas for 𝑛 =
16, the power consumption is comparable. To ensure a fair 

comparison, considering the differing delays of these designs, 

we evaluate the Power Delay Product (PDP). The proposed 

design outperforms [31] in PDP by 3% for 𝑛 = 8 and 8% for 

𝑛 = 16, making it a more power-efficient option when delay 

is factored in. 
TABLE II.  

SYNTHESIS REPORT OF DIFFERENT DESIGNS FOR 𝒏, 𝛅 = 8, 11 AND 16, 63. 

(𝒏, 𝛅) Designs 
Delay 
𝒑𝒔 

Area 
𝝁𝒎𝟐 

Power 
𝝁𝑾 

PDP 
𝒑𝒔 × 𝝁𝑾 

(𝟖, 𝟏𝟏) 
 

Binary 205 297 96 19680 

[2] 415.9 607 230 95657 

[31] 350.7 734 192 67334 

[12] 365.5 615 252 92106 

New 307.6 498 212 65211 

(𝟏𝟔, 𝟔𝟑) 
 

Binary 316 522 182 57512 

[2] 501.1 1061 406 203447 

[31] 442.2 1254 393 173785 

[12] 427.3 1209 497 212368 

New 406.8 876 392 159466 

To validate the design further, we investigated area and 

power across various time constraints. By sweeping time 

constraints from 1ns to the minimum achievable delay in 

50ps decrements steps, we generated a comprehensive view 

of each design's characteristics, as shown in Fig. 6. While 

some outliers exist due to synthesizer behavior, the overall 

trends confirm the efficiency of the proposed design. 

 

 
(a) area 

  
(b) Power 

Fig. 6. Synthesis report with different time constraints for 𝑛, δ = 8, 11 

 
𝜇𝑊 

 
𝜇𝑚2 

 
#𝐺 

 
∆𝐺 
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Additionally, in Table III, we attempted to reproduce the 

synthesis results reported in [12]. However, due to limitations 

such as the unavailability of source code and differences in 

synthesis environments, we were unable to fully replicate 

their results. To provide a meaningful comparison, we 

included a simple binary adder as a reference point. Our 

analysis indicates that the proposed design consistently 

achieves better delay and area metrics compared to prior 

works. While the proposed design does not exhibit the lowest 

power consumption in 2 out of 8 cases, its superior PDP and 

delay demonstrate that it outperforms other designs in overall 

efficiency. 

TABLE III. SYNTHESIS RESULTS OF DELAY, AREA, AND POWER OF 

PROPOSED DESIGN AND THE PRIOR WORKS 

Modulo Designs 
Delay 
𝒑𝒔 

Area 
𝝁𝒎𝟐 

Power 
𝝁𝑾 

PDP 
𝒑𝒔 × 𝝁𝑾 

167 

Binary 184 236 76 13984 

[12] 333 572 236 78588 

[31] 335 449 135 45225 

[2] 410 417 175 71750 

New 231 250 105 24255 

757 

Binary 217 275 95 20615 

[12] 434 651 296 128464 

[31] 412 617 189 77868 

[2] 416 527 225 93600 

New 325 447 197 64025 

1777 

Binary 201 339 118 23718 

[12] 400 778 345 138000 

[31] 405 679 218 88290 

[2] 518 575 244 126392 

New 336 552 217 72912 

2579 

Binary 250 453 146 36500 

[12] 459 857 359 164781 

[31] 376 989 287 107912 

[2] 467 839 337 157379 

New 341 539 238 81158 

6173 

Binary 217 430 146 31682 

[12] 525 982 416 218400 

[31] 436 958 300 130800 

[2] 516 682 283 146028 

New 370 680 274 101380 

11353 

Binary 265 598 200 53000 

[12] 427 1031 451 192577 

[31] 428 973 298 127544 

[2] 525 785 342 179550 

New 310 612 273 84630 

27073 

Binary 235 668 212 49820 

[12] 434 1095 493 213962 

[31] 503 888 307 154421 

[2] 545 815 342 186390 

New 316 677 275 86900 

 

To evaluate the scalability of the proposed design, we 

synthesized adders with channel widths ranging from 𝑛 = 4  

to 𝑛 = 16. The results, illustrated in Fig. 7, show that the 

proposed design outperforms prior works in terms of delay, 

area, and power across all tested widths. These results 

underscore the design's adaptability and overall advantage in 

critical parameters for modular arithmetic operations. By 

comparing with the best-performing component from each of 

the referenced works, the proposed design achieves average 

improvements of 21% in delay, 20% in area, 14% in power 

consumption, and 31% in PDP. These investigations 

highlight the versatility and efficiency of the proposed design, 

establishing it as a robust choice for reconfigurable modular 

arithmetic with minimal trade-offs. 

 

 
(a) Delay 

 
(b) Area 

 
(c) Power 

Fig. 7. Synthesis report with different channel bit widths (𝑛) and moduli (𝑚) 
 

As part of our final investigation, we set δ = 1  to 

compare our proposed design with the diminished one 

modulo-(2𝑛 + 1) adder introduced in [35], widely regarded 

as one of the most efficient designs in the field. The code for 

this adder is publicly available on https://iis-

people.ee.ethz.ch/~zimmi/. While the results indicate that our 

proposed design does not surpass the performance of the 

diminished one modulo-(2𝑛 + 1) adder, the differences are 

minimal. This demonstrates that our design achieves 

competitive performance. It is worth noting that our proposed 

design is highly versatile and can operate without restrictions 

on δ, a significant advantage over certain generic adders that 

fail to support δ = 1 [12].  

VI. CONCLUSOIN 

This paper presents a novel algorithm for efficient 

modular addition in RNS, targeting moduli of the form (2𝑛 +
δ)  , where δ  is an integer within 0 ≤ 𝛿 ≤ 2𝑛−1 − 1 . By 

leveraging a two-valued digit (twit) encoding for ±δ , the 

proposed approach achieves significant improvements in 

delay, area, and power consumption compared to prior 

designs. The introduction of twit-based residue encoding not 

only simplifies modular reduction but also eliminates the 

need for multiple CPAs and multiplexers typically required 

in generic modular adders. The analytical and experimental 

results demonstrate the efficacy of the proposed design across 

practical 𝑛  ( 4 ≤ 𝑛 ≤ 16 ). Synthesis using the FreePDK 

45nm process demonstrates that, compared with the best-

performing components from referenced works, the proposed 

design achieves average improvements of 21% in delay, 20% 

in area, 14% in power consumption, and 31% in PDP. 

 
𝜇𝑊 

 
𝜇𝑚2 

 
𝑝𝑠 
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Additionally, the fault-tolerant capabilities enabled by RMAs 

enhance the reliability of RNS processors while reducing 

hardware redundancy. By addressing the challenges of 

dynamic range and operating frequency, this work 

contributes a robust and efficient solution for modular 

arithmetic in modern computing systems. 
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