
On the Flop and Flap Counts of the
2,8-Split-Radix FFT

Paul Caprioli
High Performance Kernels LLC

paul@hpkfft.com

Abstract—We define flap to mean a floating point amalgamated
operation, i.e., an add, multiply, or multiply-add operation, and
derive asymptotic flop and flap counts for the radix-2, radix-4,
radix-8, 2,4-split-radix, and 2,8-split-radix FFT algorithms. We
find that, of these, the 2,8-split-radix algorithm requires the fewest
flaps. Lastly, we opine on real-value scaling of an FFT.

Index Terms—Fast Fourier transforms, algorithmic efficiency.

I. APERITIVO

The Discrete Fourier Transform (DFT) maps a sequence of
𝑁 complex numbers in the time domain

x = ⟨𝑥0, 𝑥1, . . . , 𝑥𝑁−1⟩

into another sequence of 𝑁 complex numbers in the frequency
domain

F (x) = X = ⟨𝑋0, 𝑋1, . . . , 𝑋𝑁−1⟩

such that

𝑋𝑘 =

𝑁−1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁 𝑥𝑛 (1)

where
𝜔𝑁 = exp

(
−2𝜋𝑖
𝑁

)
and 𝑖 =

√
−1.

A Fast Fourier Transform (FFT) is an algorithm for comput-
ing the DFT that has log-linear complexity, i.e., O(𝑁 log 𝑁).
FFT algorithms have been studied extensively, and in this brief
article we cannot do justice to the resulting body of prior art.
The background section of “High Performance Kernels for FFT
via Modern C++” by Caprioli and Jenkins [1] offers ample
motivation and references.

II. ANTIPASTO

A. Flops and Flaps

In this paper, we make the usual assumption that the values
of 𝜔 𝑛

𝑁
have been precomputed for all 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}.

Note that these are points on the unit circle in the complex
plane. Since typically a very large number of FFTs need to
be computed for a given length 𝑁 , it makes sense to do this
work up-front. (If you’ve downloaded this paper onto a mobile
device, consider how many FFTs were used to accomplish that
feat.) Therefore, we will ignore division and trigonometric
function evaluation and state the following:

Definition 1. A floating point operation, or flop, is the addition,
subtraction, or multiplication of two floating point numbers.

The IEEE Standard for Floating-Point Arithmetic [2] also
specifies a three operand fused multiply-add (FMA) which
calculates (𝑎× 𝑏) + 𝑐 without intermediate rounding. Hardware
is often designed to execute an FMA instruction with the same
latency and throughput as a multiply instruction despite the
former’s counting as two flops. In fact, overall throughput
is shared, as a multiply is effectively implemented as if it
were (𝑎 × 𝑏) + 0. This, not the fused arithmetic having only
final rounding, motivates a second metric. There are various
precedents [3] [4], but we prefer to coin the following:

Definition 2. A floating point amalgamated operation, or flap,
is a fused multiply-add, a fused multiply-subtract, or any flop
that is not itself a component of the aforementioned operations.

Hardware vendors generally agree that an FMA flap is two
flops and proceed to tout their floating point capability in terms
of flops per second. That is fine and reasonable, and naturally
they use FMA-centric benchmarks to showcase their results.
But when comparing the computational complexity of FFT
algorithms, it makes sense to consider flaps. For example,
𝑎 × (𝑏 + 𝑐) is also two flops, but unlike an FMA, it requires
two flaps. An algorithm that replaces this with an FMA would,
ceteris paribus, be preferred.

B. Complex Multiplication

The standard 6 flop implementation of a complex product
uses 4 flaps, as implied by the extra parentheses below:

𝑥 𝑦 = (𝑎 + 𝑏𝑖) (𝑐 + 𝑑𝑖)
=

(
𝑎𝑐 − (𝑏𝑑)

)
+

(
𝑎𝑑 + (𝑏𝑐)

)
𝑖.

(2)

We will be ignoring data movement in this paper, but that is
not meant to suggest it is unimportant. Performance is highly
dependent on loads, stores, and how the memory access patterns
interact with the cache hierarchy. Furthermore, parallelizing
using SIMD vector registers is essential to good performance,
and this requires data shuffling instructions, which are also not
considered when counting flops or flaps.

The quality of an algorithm’s implementation, though hard
to define, is crucial to its performance. For example, the
complex multiplication code given in Intel’s 2011 (and later)
optimization manual [5] takes advantage of hardware’s ability
to perform basic shuffles on load ports and can be updated to
use an FMA. Assuming that rax contains a pointer to memory
containing the sequence ⟨𝑎 + 𝑏𝑖, . . . ⟩ and rdx to ⟨𝑐 + 𝑑𝑖, . . . ⟩,
the following AVX2 assembly code:

45

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00017

vmovsldup (%rax), %ymm0
vmovshdup (%rax), %ymm1
vmovups (%rdx), %ymm4
vshufps $0xB1 , %ymm4 , %ymm4 , %ymm5
vmulps %ymm1 , %ymm5 , %ymm5
vfmaddsub231ps %ymm0 , %ymm4 , %ymm5

sets

ymm0 = {a, a, ...}
ymm1 = {b, b, ...}
ymm4 = {c, d, ...}
ymm5 = {d, c, ...}
ymm5 = {bd, bc, ...}
ymm5 = {ac - (bd), ad + (bc), ...}

Note that only the last two instructions1 perform flops; the first
four are data movement. Since each ymm register holds four
complex points (eight single precision floating point numbers),
the multiply is 8 flaps and is also 8 flops. The FMA is 8 flaps
and is 16 flops. In summary, the operation counts are exactly

(𝑁)

ADD 0
MUL 2
FMA 2

flops 6
flaps 4

where 𝑁 is the number of complex multiplications.

III. PRIMO

A. Radix-2 FFT

The radix-2 decimation-in-time decomposition [6] can be
derived by separating the original equation (1) into even and
odd terms:

𝑋𝑘 =

𝑁/2 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/2 𝑥2𝑛 + 𝜔𝑘

𝑁

𝑁/2 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/2 𝑥2𝑛+1. (3)

In the odd-term summation above, we have made use of the
fact that

𝜔
𝑘 (2𝑛+1)
𝑁

= 𝜔2𝑘𝑛+𝑘
𝑁 = 𝜔𝑘𝑛

𝑁/2 𝜔
𝑘
𝑁

and pulled the last factor, which is independent of 𝑛, outside
the summation. It is called a twiddle factor.2

Observing that each summation in (3) is of the form (1)
leads to the radix-2 recursive algorithm shown in the column
on the right. It is worth mentioning that the subtraction arises
since

𝜔
𝑘+𝑁/2
𝑁

= 𝜔𝑘
𝑁 𝜔

𝑁/2
𝑁

= 𝜔𝑘
𝑁 𝑒−𝜋𝑖 = −𝜔𝑘

𝑁

and the resulting opportunity for reusing subexpressions is the
reason for producing output points two at a time.

1We considered calling these flinstrs but restrained ourselves.
2Those who would harrumph at flap are advised first to contemplate their

assent to twiddle.

Radix-2 FFT
input : 𝑥0, 𝑥1, . . . , 𝑥𝑁−1
output : 𝑋0, 𝑋1, . . . , 𝑋𝑁−1
requires: 𝑁 = 2𝑝 for 𝑝 ≥ 0
function fft_2<𝑁>

if 𝑁 < 2 then
𝑋0 ← 𝑥0

else
𝜔← exp(−2𝜋𝑖/𝑁)
u← fft_2<𝑁/2>(𝑥0, 𝑥2, . . . , 𝑥𝑁−2)
v← fft_2<𝑁/2>(𝑥1, 𝑥3, . . . , 𝑥𝑁−1)
for 𝑘 ← 0 to 𝑁/2 − 1 do

𝑋𝑘 ← 𝑢𝑘 + 𝜔𝑘𝑣𝑘
𝑋𝑘+𝑁/2 ← 𝑢𝑘 − 𝜔𝑘𝑣𝑘

end
end

end

The for loop of function fft_2<𝑁> above iterates 𝑁/2 times
and contains one complex multiplication (by a twiddle factor)
and two complex additions. Note that we do not distinguish
subtractions from additions in our accounting.

To count the total number of operations required by this
algorithm, we must understand the recursion. The sequence of
calls made by fft_2<64> is illustrated in Fig. 1. The first line
contains 64 points, with each point represented by a triangle.3

The points on the top line require computing two 32-point
FFTs, which are shown in the second line of the figure. Each
of these requires two 16-point FFTs, shown in the third line,
and so forth. Thus, the number of lines in the figure (the depth
of the recursion) is log2𝑁 .

Fig. 1. Recursion for radix-2 for 𝑁 = 64

In an optimized implementation, some attention would be
paid to the base case. In particular, a two-point FFT is simply
F ⟨𝑥0, 𝑥1⟩ = ⟨𝑥0 + 𝑥1, 𝑥0 − 𝑥1⟩, since inside the loop 𝑘 = 0 and
𝜔0 = 1. However, such details can be ignored in an asymptotic
analysis; so in terms of real operations, we obtain

(𝑁 log2𝑁)

ADD 2.0
MUL 1.0
FMA 1.0

flops 5.0
flaps 4.0

3At least triangles are pointy. Since the point will be calculated by a calling
a ½-length FFT, we’d have preferred digons, but sadly these are degenerate
and thus ill-suited for figures.

46

B. Radix-4 FFT

Separating summation (1) into terms modulo four yields

𝑋𝑘 =

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛 + 𝜔𝑘

𝑁

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛+1

+ 𝜔2𝑘
𝑁

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛+2 + 𝜔3𝑘

𝑁

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛+3

(4)

and the algorithm

Radix-4 FFT
input : 𝑥0, 𝑥1, . . . , 𝑥𝑁−1
output : 𝑋0, 𝑋1, . . . , 𝑋𝑁−1
requires: 𝑁 = 2𝑝 for 𝑝 ≥ 0
function fft_4<𝑁>

if 𝑁 < 4 then
X← fft_2<𝑁>(x)

else
𝜔← exp(−2𝜋𝑖/𝑁)
u← fft_4<𝑁/4>(𝑥0, 𝑥4, . . . , 𝑥𝑁−4)
y← fft_4<𝑁/4>(𝑥1, 𝑥5, . . . , 𝑥𝑁−3)
v← fft_4<𝑁/4>(𝑥2, 𝑥6, . . . , 𝑥𝑁−2)
z← fft_4<𝑁/4>(𝑥3, 𝑥7, . . . , 𝑥𝑁−1)
for 𝑘 ← 0 to 𝑁/4 − 1 do

𝑋𝑘 ← (𝑢𝑘 + 𝜔2𝑘𝑣𝑘) + (𝜔𝑘𝑦𝑘 + 𝜔3𝑘𝑧𝑘)
𝑋𝑘+ 𝑁/4 ← (𝑢𝑘 −𝜔2𝑘𝑣𝑘) − 𝑖(𝜔𝑘𝑦𝑘 −𝜔3𝑘𝑧𝑘)
𝑋𝑘+2𝑁/4 ← (𝑢𝑘 + 𝜔2𝑘𝑣𝑘) − (𝜔𝑘𝑦𝑘 + 𝜔3𝑘𝑧𝑘)
𝑋𝑘+3𝑁/4 ← (𝑢𝑘 − 𝜔2𝑘𝑣𝑘) + 𝑖(𝜔𝑘𝑦𝑘 − 𝜔3𝑘𝑧𝑘)

end
end

end

The for loop of function fft_4<𝑁> iterates 𝑁/4 times,
and after common subexpression elimination, contains three
complex multiplications and eight complex additions. Note
that multiplication by 1, −1, 𝑖, or −𝑖 does not require any
flops, but rather, at most, data movement followed by changing
addition to subtraction or vice versa. This is quite nice—we’re
computing points four at a time and don’t need multiplications
to put the pieces together. Unfortunately, though, three of the
four subproblem results do require complex multiplication by
twiddle factors. (In the previous algorithm, it was only one
out of two.)

The sequence of calls for fft_4<64> is illustrated in Fig. 2.
The first line contains 64 points, with each point represented
by a square.4 The points on the top line require computing
four 16-point FFTs, which are shown in the third line of the
figure. The second line is empty since no 32-point FFTs are
used. Likewise, no 8-point FFTs are computed. The fifth line
shows the 4-point FFTs, which themselves invoke no further
recursion.

4Squares, which have four sides, are used to indicate that the point will be
calculated by a calling a ¼-length FFT.

Fig. 2. Recursion for radix-4 for 𝑁 = 64

The box in Fig. 2 above, which has depth log2𝑁 , is one-half
full, so we must apply this factor to our operation counts.
Asymptotically the real operation counts are as follows:

(𝑁 log2𝑁)

ADD 2.0
MUL 0.75
FMA 0.75

flops 4.25
flaps 3.5

For both the radix-2 and radix-4 FFTs, Cornea et al. [3]
obtain flop and flap results identical to ours. For radix-4, they
observe that there are log4𝑁 recursive calls and use the fact
that log4𝑁 = 1

2 log2𝑁 .
Again, optimized implementations benefit from adding a

specialized base case that avoids all multiplications:

Four Point FFT
input : 𝑥0, 𝑥1, 𝑥2, 𝑥3
output : 𝑋0, 𝑋1, 𝑋2, 𝑋3

function fft_4<4>
𝑋0 ← (𝑥0 + 𝑥2) + (𝑥1 + 𝑥3)
𝑋1 ← (𝑥0 − 𝑥2) − 𝑖(𝑥1 − 𝑥3)
𝑋2 ← (𝑥0 + 𝑥2) − (𝑥1 + 𝑥3)
𝑋3 ← (𝑥0 − 𝑥2) + 𝑖(𝑥1 − 𝑥3)

end

C. Radix-8 FFT

Separating the original equation (1) into terms modulo eight
yields

𝑋𝑘 =

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛 + 𝜔𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+1

+ 𝜔2𝑘
𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+2 + 𝜔3𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+3

+ 𝜔4𝑘
𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+4 + 𝜔5𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+5

+ 𝜔6𝑘
𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+6 + 𝜔7𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+7.

(5)

The radix-8 recursive algorithm is apparent from the equation
above, though it is worthwhile to write it out to see the common
subexpressions.

47

A key observation is that the complex product (1± 𝑖) 𝑧 can
be rewritten as 𝑧 ± 𝑖 𝑧, which does not require multiplications.
This is applicable to the radix-8 algorithm since

𝜔
𝑘+𝑁/8
𝑁

= 𝜔
𝑁/8
𝑁

𝜔𝑘
𝑁

= 𝑒−𝜋𝑖/4𝜔𝑘
𝑁

=
√

1/2 (1− 𝑖)𝜔𝑘
𝑁 .

Therefore, combining the subproblem results will take fewer
operations than a simpler reckoning would suggest. On the
other hand, seven of the eight sums in (5) require complex
multiplication by twiddle factors.

Finally, note that the pair of real expressions

𝑎 + √1/2 𝑏

𝑎 − √1/2 𝑏

can be computed in two obvious ways. The first is to perform
a single multiply,

√
1/2 𝑏, followed by one add and one subtract.

This would cost 3 flops and 3 flaps. The second would be to
use two FMAs, which would cost 4 flops but only 2 flaps. The
FMA approach is generally preferred since, from a throughput
perspective, it requires fewer instructions, and from a latency
perspective, the instruction dependency graph is shallower.
The two FMAs can execute in parallel. Nevertheless, we will
consider both implementations in our analysis below.

The algorithm is shown in the column to the right. The
for loop of function fft_8<𝑁> iterates 𝑁/8 times, and inside
the loop the computation of the 𝑡 variables entails 7 complex
twiddle factor multiplications and 16 complex additions. Then,
the computation of (𝑡5 ± 𝑖 𝑡7) requires 2 complex additions.
Finally, the complex points 𝑋 are computed either with 4 real
multiplications (since

√
1/2 is real but (𝑡5 ± 𝑖 𝑡7) is complex)

and 16 real additions, or preferably, with 8 real FMAs and
8 real additions.

The sequence of calls for fft_8<64> is illustrated in Fig. 3.
The first line contains 64 points, with each point represented
by an octagon.8 The points on the top line require computing
eight 8-point FFTs, which are shown in the fourth line. No
other FFT subproblems are needed, so all other lines in the
figure are empty. In general, the box, which has depth log2𝑁 ,
is one-third full.

Fig. 3. Recursion for radix-8 for 𝑁 = 64

The operation counts from examining the code inside the
for loop need to be multiplied by 𝑁/8, the iteration count, and
by 1

3 log2𝑁 , the number of recursive function calls.
Optimizing this radix-8 FFT for flops, we obtain Bergland’s

flop results [7] [8] and Linzer and Feig’s flap results [9].

8Octagons indicate decomposition into subproblems having one-eighth as
many points as the current problem.

Radix-8 FFT
input : 𝑥0, 𝑥1, . . . , 𝑥𝑁−1
output : 𝑋0, 𝑋1, . . . , 𝑋𝑁−1
requires: 𝑁 = 2𝑝 for 𝑝 ≥ 0
function fft_8<𝑁>

if 𝑁 < 8 then
X← fft_4<𝑁>(x)

else
𝜔← exp(−2𝜋𝑖/𝑁)
u← fft_8<𝑁/8>(𝑥0, 𝑥8, . . . , 𝑥𝑁−8)
y← fft_8<𝑁/8>(𝑥1, 𝑥9, . . . , 𝑥𝑁−7)
û← fft_8<𝑁/8>(𝑥2, 𝑥10, . . . , 𝑥𝑁−6)
ŷ← fft_8<𝑁/8>(𝑥3, 𝑥11, . . . , 𝑥𝑁−5)
v← fft_8<𝑁/8>(𝑥4, 𝑥12, . . . , 𝑥𝑁−4)
z← fft_8<𝑁/8>(𝑥5, 𝑥13, . . . , 𝑥𝑁−3)
v̂← fft_8<𝑁/8>(𝑥6, 𝑥14, . . . , 𝑥𝑁−2)
ẑ← fft_8<𝑁/8>(𝑥7, 𝑥15, . . . , 𝑥𝑁−1)
for 𝑘 ← 0 to 𝑁/8 − 1 do

𝑡0 ← (𝑢𝑘 + 𝜔4𝑘𝑣𝑘) + (𝜔2𝑘 𝑢̂𝑘 + 𝜔6𝑘 𝑣̂𝑘)
𝑡1 ← (𝜔𝑘𝑦𝑘 + 𝜔5𝑘𝑧𝑘) + (𝜔3𝑘 𝑦̂𝑘 + 𝜔7𝑘𝑧𝑘)
𝑡2 ← (𝑢𝑘 + 𝜔4𝑘𝑣𝑘) − (𝜔2𝑘 𝑢̂𝑘 + 𝜔6𝑘 𝑣̂𝑘)
𝑡3 ← (𝜔𝑘𝑦𝑘 + 𝜔5𝑘𝑧𝑘) − (𝜔3𝑘 𝑦̂𝑘 + 𝜔7𝑘𝑧𝑘)
𝑡4 ← (𝑢𝑘 − 𝜔4𝑘𝑣𝑘) − 𝑖(𝜔2𝑘 𝑢̂𝑘 − 𝜔6𝑘 𝑣̂𝑘)
𝑡5 ← (𝜔𝑘𝑦𝑘 − 𝜔5𝑘𝑧𝑘) − (𝜔3𝑘 𝑦̂𝑘 − 𝜔7𝑘𝑧𝑘)
𝑡6 ← (𝑢𝑘 − 𝜔4𝑘𝑣𝑘) + 𝑖(𝜔2𝑘 𝑢̂𝑘 − 𝜔6𝑘 𝑣̂𝑘)
𝑡7 ← (𝜔𝑘𝑦𝑘 − 𝜔5𝑘𝑧𝑘) + (𝜔3𝑘 𝑦̂𝑘 − 𝜔7𝑘𝑧𝑘)
𝑋𝑘 ← 𝑡0 + 𝑡1
𝑋𝑘+ 𝑁/8 ← 𝑡4 +

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋𝑘+2𝑁/8 ← 𝑡2 − 𝑖 𝑡3
𝑋𝑘+3𝑁/8 ← 𝑡6 −

√
1/2 (𝑡5 + 𝑖 𝑡7)

𝑋𝑘+4𝑁/8 ← 𝑡0 − 𝑡1
𝑋𝑘+5𝑁/8 ← 𝑡4 −

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋𝑘+6𝑁/8 ← 𝑡2 + 𝑖 𝑡3
𝑋𝑘+7𝑁/8 ← 𝑡6 +

√
1/2 (𝑡5 + 𝑖 𝑡7)

end
end

end

Current hardware, however, is more likely to benefit from
optimizing for flaps, and doing so improves flap complexity.
The asymptotic real operation counts for both implementations
are tabulated below. We see that, compared to radix-4, either
the flop count or the flap count is reduced, but not both. To our
knowledge, the 3.33 𝑁 log2𝑁 result has not been previously
published.

(𝑁 log2𝑁) (𝑁 log2𝑁)

ADD 2.166 1.833
MUL 0.750 0.583
FMA 0.583 0.916

flops 4.083 4.25
flaps 3.5 3.33

48

IV. SECONDO

A. 2,4-Split-Radix FFT

The radix-4 FFT algorithm was shown to be superior to the
radix-2, both in terms of flops and flaps. However, the radix-2
decomposition into even and odd terms had one advantage: it
required that none of the even terms be multiplied by twiddle
factors. This motivates the split radix algorithm [10] [11],
which combines a radix-2 and a radix-4 FFT, using the former
for the even terms and the latter for the odd:

𝑋𝑘 =

𝑁/2 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/2 𝑥2𝑛

+ 𝜔𝑘
𝑁

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛+1 + 𝜔3𝑘

𝑁

𝑁/4 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/4 𝑥4𝑛+3.

(6)

In implementing (6) algorithmically, it is noteworthy that the
first subproblem has twice the length of the other two. That
poses no difficulty; FFTs are periodic, and results can simply
be repeated as necessary. For example, consider the middle
term in (6) when computing 𝑋𝑘+𝑁/4. In front of the summation

𝜔
𝑘+𝑁/4
𝑁

= 𝜔𝑘
𝑁 𝑒−2𝜋𝑖/4 = −𝑖𝜔𝑘

𝑁

but inside the summation

𝜔
(𝑘+𝑁/4) 𝑛
𝑁/4 = 𝜔𝑘𝑛

𝑁/4 𝑒
−2𝜋𝑖𝑛 = 𝜔𝑘𝑛

𝑁/4.

2,4-Split-Radix FFT

input : 𝑥0, 𝑥1, . . . , 𝑥𝑁−1
output : 𝑋0, 𝑋1, . . . , 𝑋𝑁−1
requires: 𝑁 = 2𝑝 for 𝑝 ≥ 0
function fft_2_4<𝑁>

if 𝑁 < 4 then
X← fft_2<𝑁>(x)

else
𝜔← exp(−2𝜋𝑖/𝑁)
u← fft_2_4<𝑁/2>(𝑥0, 𝑥2, 𝑥4, 𝑥6, . . . , 𝑥𝑁−2)
y← fft_2_4<𝑁/4>(𝑥1, 𝑥5, . . . , 𝑥𝑁−3)
z← fft_2_4<𝑁/4>(𝑥3, 𝑥7, . . . , 𝑥𝑁−1)
for 𝑘 ← 0 to 𝑁/4 − 1 do

𝑋𝑘 ← 𝑢𝑘 + (𝜔𝑘𝑦𝑘 + 𝜔3𝑘𝑧𝑘)
𝑋𝑘+ 𝑁/4 ← 𝑢𝑘+𝑁/4 − 𝑖(𝜔𝑘𝑦𝑘 − 𝜔3𝑘𝑧𝑘)
𝑋𝑘+2𝑁/4 ← 𝑢𝑘 − (𝜔𝑘𝑦𝑘 + 𝜔3𝑘𝑧𝑘)
𝑋𝑘+3𝑁/4 ← 𝑢𝑘+𝑁/4 + 𝑖(𝜔𝑘𝑦𝑘 − 𝜔3𝑘𝑧𝑘)

end
end

end

The for loop above iterates 𝑁/4 times and contains two
complex multiplications and six complex additions. Regarding
the recursion, the first level for a 64-point FFT is shown in
the top of Fig. 4. The topmost line has 64 points, and its
even and odd elements are indicated by triangles and squares,
respectively. The even points will be computed by a 32-point

FFT, which is shown in the second row. The odd points will
be computed by two 16-point FFTs, shown in the third row.
The 32-point and 16-point subproblems will be recursively
computed by fft_2_4 until the base case is reached. This is
shown in the bottom of Fig. 4.

Fig. 4. Recursion for 2,4-split-radix after first step (top)
and after five steps (bottom) for 𝑁 = 64

In general, the number of points in a row is given by the
sum of the number of even points in the row immediately
above it and the number of odd points in the row two levels
above it. Letting 𝑔𝑟 represent the fraction of points in row 𝑟,
the sequence ⟨𝑔𝑟 ⟩ is〈

1,
1
2
,
3
4
,
5
8
,
11
16

,
21
32

,
43
64

,
85
128

,
171
256

,
341
512

,

683
1024

,
1365
2048

,
2731
4096

, . . .

〉
.

This is described by the recurrence

𝑔𝑟 =
𝑔𝑟−1

2
+ 𝑔𝑟−2

2
+ [𝑟 = 0] (7)

where

[𝑟 = 0] def
=

{
1 if 𝑟 = 0
0 otherwise

and has the closed form solution

𝑔𝑟 =
2
3
+ 1

3

(
−1
2

)𝑟
. (8)

As Knuth [12] observed, “once such an equation has been
found, it is a simple matter to prove it by induction, and we
need not even mention that we used generating functions to
discover it.” So we shan’t. What is important is that

lim
𝑟→∞

𝑔𝑟 = 2/3. (9)

Therefore, asymptotically, we obtain the real operation counts
that have been reported elsewhere [13] [8] [9]:

(𝑁 log2𝑁)

ADD 2.0
MUL 0.66
FMA 0.66

flops 4.0
flaps 3.33

This algorithm requires fewer flops than any of the previous
but the same number of flaps as the radix-8 FFT.

49

B. 2,8-Split-Radix FFT

The radix-8 algorithm was better able to utilize a hardware
FMA since 𝜔8 =

√
1/2 (1 − 𝑖), and the constant

√
1/2 could be

amalgamated into existing additions or subtractions. So, in
order to take advantage of this optimization while also reducing
the number of complex twiddle multiplications, let’s consider
the following decomposition:

𝑋𝑘 =

𝑁/2 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/2 𝑥2𝑛

+ 𝜔𝑘
𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+1 + 𝜔3𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+3

+ 𝜔5𝑘
𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+5 + 𝜔7𝑘

𝑁

𝑁/8 −1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁/8 𝑥8𝑛+7.

(10)

In (10) above, we have used radix-2 for the even terms, as
in the 2,4-split-radix, but are now using radix-8 for the odd
terms. Duhamel and Hollmann [11] considered this in 1984
and noted that doing so “does not improve the algorithm,” but
their conclusion pertained to hardware lacking an FMA.

The algorithm is as follows:

2,8-Split-Radix FFT

input : 𝑥0, 𝑥1, . . . , 𝑥𝑁−1
output : 𝑋0, 𝑋1, . . . , 𝑋𝑁−1
requires: 𝑁 = 2𝑝 for 𝑝 ≥ 0
function fft_2_8<𝑁>

if 𝑁 < 8 then
X← fft_4<𝑁>(x)

else
𝜔← exp(−2𝜋𝑖/𝑁)
u← fft_2_8<𝑁/2>(𝑥0, 𝑥2, 𝑥4, 𝑥6, . . . , 𝑥𝑁−2)
y← fft_2_8<𝑁/8>(𝑥1, 𝑥9, . . . , 𝑥𝑁−7)
ŷ← fft_2_8<𝑁/8>(𝑥3, 𝑥11, . . . , 𝑥𝑁−5)
z← fft_2_8<𝑁/8>(𝑥5, 𝑥13, . . . , 𝑥𝑁−3)
ẑ← fft_2_8<𝑁/8>(𝑥7, 𝑥15, . . . , 𝑥𝑁−1)
for 𝑘 ← 0 to 𝑁/8 − 1 do

𝑡1 ← (𝜔𝑘𝑦𝑘 + 𝜔5𝑘𝑧𝑘) + (𝜔3𝑘 𝑦̂𝑘 + 𝜔7𝑘𝑧𝑘)
𝑡3 ← (𝜔𝑘𝑦𝑘 + 𝜔5𝑘𝑧𝑘) − (𝜔3𝑘 𝑦̂𝑘 + 𝜔7𝑘𝑧𝑘)
𝑡5 ← (𝜔𝑘𝑦𝑘 − 𝜔5𝑘𝑧𝑘) − (𝜔3𝑘 𝑦̂𝑘 − 𝜔7𝑘𝑧𝑘)
𝑡7 ← (𝜔𝑘𝑦𝑘 − 𝜔5𝑘𝑧𝑘) + (𝜔3𝑘 𝑦̂𝑘 − 𝜔7𝑘𝑧𝑘)
𝑋𝑘 ← 𝑢𝑘 + 𝑡1
𝑋𝑘+ 𝑁/8 ← 𝑢𝑘+ 𝑁/8 +

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋𝑘+2𝑁/8 ← 𝑢𝑘+2𝑁/8 − 𝑖 𝑡3
𝑋𝑘+3𝑁/8 ← 𝑢𝑘+3𝑁/8 −

√
1/2 (𝑡5 + 𝑖 𝑡7)

𝑋𝑘+4𝑁/8 ← 𝑢𝑘 − 𝑡1
𝑋𝑘+5𝑁/8 ← 𝑢𝑘+ 𝑁/8 −

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋𝑘+6𝑁/8 ← 𝑢𝑘+2𝑁/8 + 𝑖 𝑡3
𝑋𝑘+7𝑁/8 ← 𝑢𝑘+3𝑁/8 +

√
1/2 (𝑡5 + 𝑖 𝑡7)

end
end

end

The for loop in the preferred flap-optimized implementation
has 4 complex multiplications, 14 complex additions, and 8
real FMAs. If we had instead computed

√
1/2 (𝑡5 ± 𝑖 𝑡7) as two

common subexpressions, we would have needed 4 more real
multiplications, but all of the 8 final FMAs would have become
additions. This would have added 4 flaps (the multiplications)
but overall would have saved 4 flops.

The first level for a 64-point FFT is shown in the top of
Fig. 5. The topmost line has 64 points, and its even and odd
elements are indicated by triangles and octagons, respectively.
The even points will be computed by a 32-point FFT, which is
shown in the second row. The odd points will be computed by
four 8-point FFTs, shown in the fourth row. The subproblems
will be recursively computed by fft_2_8 until the base case
is reached. This is shown in the bottom of Fig. 5.

Fig. 5. Recursion for 2,8-split-radix after first step (top)
and after five steps (bottom) for 𝑁 = 64

Letting 𝑔𝑟 represent the fraction of points in row 𝑟 above,
the sequence ⟨𝑔𝑟 ⟩ is〈

1,
1
2
,
1
4
,
5
8
,

9
16

,
13
32

,
33
64

,
69
128

,
121
256

,
253
512

,

529
1024

,
1013
2048

,
2025
4096

, . . .

〉
which is described by

𝑔𝑟 =
𝑔𝑟−1

2
+ 𝑔𝑟−3

2
+ [𝑟 = 0] (11)

and has solution

𝑔𝑟 =
1
2
+

(
1
4
−
√

7
28

𝑖

) (
−1
4
+
√

7
4
𝑖

)𝑟
+

(
1
4
+
√

7
28

𝑖

) (
−1
4
−
√

7
4
𝑖

)𝑟
.

(12)

Note that
lim
𝑟→∞

𝑔𝑟 = 1/2 (13)

so asymptotically, we obtain either of the following operation
counts:

(𝑁 log2𝑁) (𝑁 log2𝑁)

ADD 2.25 1.75
MUL 0.75 0.5
FMA 0.5 1.0

flops 4.0 4.25
flaps 3.5 3.25

50

In the absence of a hardware FMA, we would implement
flop-optimized code, and the resulting 4 𝑁 log2𝑁 arithmetic
complexity would equal that of the 2,4-split-radix FFT. This, as
well as the individual MUL+FMA and ADD+FMA complexity
results, matches the results reported by Takahashi [15].

However, by optimizing for flaps, we obtain an FFT having
3.25 𝑁 log2𝑁 flap complexity, which is lower than the flap
complexity of the 2,4-split-radix FFT. We are unaware of prior
work reaching this conclusion.

V. CONTORNO

It is useful for an FFT to support multiplication by a real-
valued scaling factor, 𝛼, by modifying (1) as follows:

𝑋𝑘 = 𝛼

𝑁−1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁 𝑥𝑛 (14)

or

𝑋𝑘 =

𝑁−1∑︁
𝑛=0

𝜔𝑘𝑛
𝑁 (𝛼𝑥𝑛). (15)

We have implemented something closer to (15) for two reasons.
First, users of an FFT library may wish to scale by 0 < 𝛼 < 1
to avoid floating point overflow, so it is better for that purpose
that we scale in the leaf nodes of the recursion tree (which are
computed first) rather than in the final stages of an algorithm.
Secondly, the base case of the recursion does not require
twiddle factors. This gives us a convenient and flap-efficient
place to introduce scaling.

The three base cases needed for the algorithms discussed
in this paper are shown at the right. Note that each requires
only two more flaps (one real × complex multiplication) than
its unscaled variant. The remainder of the points are scaled by
changing additions or subtractions into FMAs. For the eight
point base case, another multiplication calculates 𝛼

√
1/2, but

this is done once for the entire FFT, not inside any recursively
invoked function. In practice, both 𝛼 and 𝛼

√
1/2 are passed as

function arguments to scale_fft_8, so scaling the transform
requires only 𝑁/4 + 1 extra flaps.

Given the efficiency of using FMAs for most of the scaling,
FFT libraries should provide an interface that both scales and
transforms in a single function call. Of course, the biggest
benefit to users (in addition to convenience) is their not having
to incur the load and store expense of looping over the input
data merely in order to scale it. Furthermore, we suggest that
the scaling factor 𝛼 should be provided at run-time, at each
transform function’s call site, rather than beforehand. There is
nothing to be gained by precomputing 𝛼

√
1/2 and suchlike in

advance.
Note that the scaling operations themselves are often directly

supported in hardware. For example, 𝑦 ± 𝛼𝑖 𝑧 for 𝛼 ∈ R
and 𝑦, 𝑧 ∈ C can be computed with Arm’s Scalable Vector
Extension [16] by first replicating 𝛼 into every element
of a SIMD vector register and then using fcmla #90 or
fcmla #270. Also, the important special case where 𝛼 = 1 is
supported using either fcadd #90 or fcadd #270.

Scaled Two Point FFT
input : 𝛼, 𝑥0, 𝑥1
output : 𝑋0, 𝑋1
requires: 𝛼 ∈ R
function scale_fft_2

𝑥1 ← 𝛼𝑥1
𝑋0 ← 𝛼𝑥0 + 𝑥1
𝑋1 ← 𝛼𝑥0 − 𝑥1

end

Scaled Four Point FFT
input : 𝛼, 𝑥0, 𝑥1, 𝑥2, 𝑥3
output : 𝑋0, 𝑋1, 𝑋2, 𝑋3
requires: 𝛼 ∈ R
function scale_fft_4

𝑥2 ← 𝛼𝑥2
𝑋0 ← (𝛼𝑥0 + 𝑥2) + 𝛼(𝑥1 + 𝑥3)
𝑋1 ← (𝛼𝑥0 − 𝑥2) − 𝛼𝑖(𝑥1 − 𝑥3)
𝑋2 ← (𝛼𝑥0 + 𝑥2) − 𝛼(𝑥1 + 𝑥3)
𝑋3 ← (𝛼𝑥0 − 𝑥2) + 𝛼𝑖(𝑥1 − 𝑥3)

end

Scaled Eight Point FFT

input : 𝛼, 𝑥0, 𝑥1, . . . , 𝑥7
output : 𝑋0, 𝑋1, . . . , 𝑋7
requires: 𝛼 ∈ R
function scale_fft_8

𝑥4 ← 𝛼𝑥4
𝑡0 ← (𝛼𝑥0 + 𝑥4) + 𝛼(𝑥2 + 𝑥6)
𝑡1 ← (𝑥1 + 𝑥5) + (𝑥3 + 𝑥7)
𝑡2 ← (𝛼𝑥0 + 𝑥4) − 𝛼(𝑥2 + 𝑥6)
𝑡3 ← (𝑥1 + 𝑥5) − (𝑥3 + 𝑥7)
𝑡4 ← (𝛼𝑥0 − 𝑥4) − 𝛼𝑖(𝑥2 − 𝑥6)
𝑡5 ← (𝑥1 − 𝑥5) − (𝑥3 − 𝑥7)
𝑡6 ← (𝛼𝑥0 − 𝑥4) + 𝛼𝑖(𝑥2 − 𝑥6)
𝑡7 ← (𝑥1 − 𝑥5) + (𝑥3 − 𝑥7)
𝑋0 ← 𝑡0 + 𝛼𝑡1
𝑋1 ← 𝑡4 + 𝛼

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋2 ← 𝑡2 − 𝛼𝑖 𝑡3
𝑋3 ← 𝑡6 − 𝛼

√
1/2 (𝑡5 + 𝑖 𝑡7)

𝑋4 ← 𝑡0 − 𝛼𝑡1
𝑋5 ← 𝑡4 − 𝛼

√
1/2 (𝑡5 − 𝑖 𝑡7)

𝑋6 ← 𝑡2 + 𝛼𝑖 𝑡3
𝑋7 ← 𝑡6 + 𝛼

√
1/2 (𝑡5 + 𝑖 𝑡7)

end

51

VI. DOLCE

If either the real or imaginary part of a complex number 𝜔̃
is ±1, the complex product 𝜔̃ 𝑧 requires only two flaps, each
of which is an FMA. For example,

𝜔̃ 𝑧 = (𝑎 − 𝑖) (𝑐 + 𝑑𝑖)
=

(
𝑎𝑐 + 𝑑

)
+

(
𝑎𝑑 − 𝑐

)
𝑖.

(16)

Linzer and Feig [4] showed that every multiplication in a
Cooley-Tukey or split-radix FFT can be amalgamated into
additions by writing

𝜔𝑘
𝑁 = cos(−2𝜋𝑘/𝑁) + 𝑖 sin(−2𝜋𝑘/𝑁)
= sin(2𝜋𝑘/𝑁)

(
cot(2𝜋𝑘/𝑁) − 𝑖

)
(17a)

= cos(2𝜋𝑘/𝑁)
(
1 − 𝑖 tan(2𝜋𝑘/𝑁)

)
(17b)

and effecting multiplication of the sine term (17a) or cosine
term (17b) by replacing ADDs with FMAs. By so modifying
the 2,4-split-radix algorithm, they achieve an asymptotic flap
complexity of

2.66 𝑁 log2𝑁.

As this is better than our 2,8-split-radix result, we would be
remiss not to mention it.

The real-valued scaling terms in (17) apply at each recursive
level and are dependent on 𝑘 , increasing both program length
and complexity [9]. Note that this is quite different from the
user-specified constant scaling, which is only applied to the
base case, that was discussed in the previous section.

We consider the Linzer and Feig redesigns to be significant
and to constitute a distinct subclass of FFT algorithms. As of
yet, we have not analyzed them ourselves nor evaluated them
in practice.

VII. DIGESTIVO

Over a quarter century ago, Frigo and Johnson [17] observed
that minimizing floating-point operations “is far less important
than it used to be,” and performance is mostly determined
by interactions of the code with the processor’s pipeline and
memory hierarchy. That was true then on a Sun Microsystems
167 MHz UltraSPARC, and it is true today on an Intel 4.6 GHz
Xeon. Descriptions of hardware microarchitecture and its
effects on performance are, of course, well outside the scope
of this article, and we must defer to software optimization
manuals [5] [18] to address such considerations.

Nevertheless, the flap complexity of an FFT algorithm is
not irrelevant. In this paper, we have focused on that metric
in the hope of contributing something interesting and perhaps
even useful. In particular, having an asymptotic complexity
of 3.25 𝑁 log2𝑁 flaps, the 2,8-split-radix FFT achieves an
advantage over the radix-2, radix-4, radix-8, and 2,4-split-radix
algorithms.

Moreover, we found the 2,8-split-radix FFT straightforward
to code. For these reasons, we chose to implement it (among
other algorithms) in our High Performance Kernels for FFT
library [1].

The proof of the pudding is in the tasting. FFTW [19]
has compared well to various publicly available libraries,
including those supplied by hardware vendors. In turn, our
library, hpk::fft, compares favorably [20] to FFTW, Intel’s
IPP and MKL libraries, and the Python module SciPy. The
performance gains are far beyond that which can be attributed
to improvements in flap complexity, but we believe the small
refinements described in this article are a contributing factor.

For more information, or to download our library, please
visit our website: https://hpkfft.com

REFERENCES

[1] P. Caprioli and R. Jenkins, “High Performance Kernels for
FFT via modern C++,” July 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.8253863

[2] IEEE Std 754–2019, IEEE Standard for Floating-Point Arithmetic. New
York, NY, USA: Institute of Electrical and Electronics Engineers, 2019.

[3] M. Cornea, J. Harrison, and P. T. P. Tang, Scientific Computing on
Itanium-Based Systems. USA: Intel Press, 2002.

[4] E. Linzer and E. Feig, “Modified FFTs for fused multiply-add architec-
tures,” Mathematics of Computation, vol. 60, pp. 347–361, 1993.

[5] Intel, Intel 64 and IA-32 Architectures Optimization Reference Manual,
Order Number: 248966-023, Intel Corporation, 2011. [Online]. Available:
https://www.intel.com/content/www/us/en/content-details/814198

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[7] G. Bergland, “A fast Fourier transform algorithm using base 8 iterations,”
Mathematics of Computation, vol. 22, pp. 275–279, April 1968.

[8] C. Van Loan, Computational Frameworks for the Fast Fourier Transform.
Philadelphia, Pennsylvania, USA: Society for Industrial and Applied
Mathematics, 1992.

[9] E. Linzer and E. Feig, “Implementation of efficient FFT algorithms
on fused multiply-add architectures,” IEEE Transactions on Signal
Processing, vol. 41, no. 1, pp. 93–107, 1993.

[10] R. Yavne, “An economical method for calculating the discrete Fourier
transform,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I, ser. AFIPS ’68. New York, NY, USA:
Association for Computing Machinery, 1968, pp. 115–125.

[11] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electronics
Letters, vol. 20, pp. 14–16, February 1984.

[12] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd
ed.): Fundamental Algorithms. Massachusetts, USA: Addison Wesley
Longman, 1997.

[13] H. Sorensen, M. Heideman, and C. S. Burrus, “On computing the
split-radix FFT,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 34, no. 1, pp. 152–156, 1986.

[14] G. Plonka, D. Potts, G. Steidl, and M. Tasche, Numerical Fourier
Analysis. Cham, Switzerland: Birkhaüser, 2018.

[15] D. Takahashi, “An extended split-radix FFT algorithm,” IEEE Signal
Processing Letters, vol. 8, no. 5, pp. 145–147, 2001.

[16] Arm, Arm A-profile A64 Instruction Set Architecture, Arm Limited,
2023. [Online]. Available: https://developer.arm.com/documentation/
ddi0602/2023-12

[17] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, vol. 3. IEEE, 1998, pp. 1381–1384.

[18] Arm. (2025) SVE optimization guide. Arm Limited. [Online]. Available:
https://developer.arm.com/documentation/102699/0100

[19] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[20] High Performance Kernels LLC. (2025) Accuracy and performance
of FFT software libraries. [Online]. Available: https://hpkfft.com/pdf/
hpkfft-benchmarks-2025.pdf

52

